\[\boxed{\mathbf{764.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\text{ABC}A_{1}B_{1}C_{1} - правильная\ \]
\[треугольная\ призма;\]
\[AB = 6\ см;\]
\[AA_{1} = 3\ см.\]
\[Решение.\]
\[\textbf{а)}\ По\ теореме\ Пифагора\ в\ \]
\[\mathrm{\Delta}AA_{1}C_{1}:\]
\[AC_{1} = \sqrt{AA_{1}^{2} + A_{1}C_{1}^{2}} =\]
\[= \sqrt{3^{2} + 6^{2}} = \sqrt{45} = 3\sqrt{5}\ см.\]
\[В\ \mathrm{\Delta}\text{AB}C_{1}\ построим\ C_{1}H\bot AB:\]
\[C_{1}H = \sqrt{AC_{1}^{2} - AH^{2}} =\]
\[= \sqrt{45 - 3^{2}} = \sqrt{36} = 6\ см;\]
\[S_{\text{AB}C_{1}} = \frac{1}{2}AB \bullet C_{1}H = \frac{1}{2} \bullet 6 \bullet 6 =\]
\[= 18\ см^{2}.\]
\[\textbf{б)}\ A_{1}B_{1} \parallel AB\ \ \ и\ \ AB \in ABC_{1}:\]
\[A_{1}B_{1} \parallel ABC_{1}.\]
\[что\ и\ требовалось\ доказать;\]
\[\textbf{в)}\ B_{1}C \in BCB_{1}C_{1}:\]
\[\angle\left( B_{1}C \right)\left( \text{ABC} \right) = \angle B_{1}\text{CB.}\]
\[Пусть\ \angle\left( B_{1}C \right)\left( \text{ABC} \right) = a;\]
\[\mathrm{\Delta}\text{BC}B_{1} - прямоугольный:\]
\[tg\ a = \frac{BB_{1}}{\text{BC}} = \frac{3}{6} = 0,5\]
\[a = arctg\ 0,5;\]
\[\textbf{г)}\ AB_{1} = B_{1}\text{C\ \ }и\ \ AB = BC:\]
\[\mathrm{\Delta}ABC - равнобедренный.\]
\[Построим\ BH\bot AC\ и\ B_{1}H\bot AC:\]
\[B_{1}H - высота.\]
\[В\ \mathrm{\Delta}AB_{1}\text{C\ }(\ AH = HC):\ \]
\[\angle\left( AB_{1}C \right)\left( \text{ABC} \right) = \angle BHB_{1}.\]
\[\mathrm{\Delta}BHC - прямоугольный:\ \]
\[BH = \sqrt{BC^{2} - CH^{2}} =\]
\[= \sqrt{6^{2} - 3^{2}} = \sqrt{27} = 3\sqrt{3}\ см.\]
\[Пусть\ \angle\left( AB_{1}C \right)\left( \text{ABC} \right) = a.\]
\[\mathrm{\Delta}\text{BH}B_{1} - прямоугольный:\]
\[tg\ a = \frac{BB_{1}}{\text{BH}} = 3\ :3\sqrt{3} = \frac{1}{\sqrt{3}}\]
\[a = arctg\frac{1}{\sqrt{3}}.\]
\[\textbf{д)}\ \overrightarrow{BB_{1}} - \overrightarrow{\text{BC}} + 2\overrightarrow{A_{1}A} - \overrightarrow{C_{1}C} =\]
\[= - 2\overrightarrow{C_{1}C} - \overrightarrow{\text{BC}} + 2\overrightarrow{C_{1}C} = - \overrightarrow{\text{BC}} =\]
\[= 6\ см.\]
\[\textbf{е)}\ S_{\text{ABC}} = \frac{1}{2}AC \bullet BH =\]
\[= \frac{1}{2} \bullet 6 \bullet 3\sqrt{3} = 9\sqrt{3}\ см^{2}.\]
\[V_{призмы} = S_{\text{ABC}} \bullet AA_{1} = 9\sqrt{3} \bullet 3 =\]
\[= 27\sqrt{3}\ см^{3}.\]