\[\boxed{\mathbf{709.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[AB = 1;\]
\[BC = 2;\]
\[BB_{1} = 3.\]
\[Решение.\]
\[A(2;0;2);\ \ B(2;1;0);\ \ C(0;1;0);\ \ \]
\[D(0;0;0);\]
\[A_{1}(2;0;3);\ \ B_{1}(2;1;3);\ \ \]
\[C_{1}(0;1;3);\ \ D_{1}(0;0;3).\]
\[\textbf{а)}\ \overrightarrow{\text{AC}}\left\{ - 2;1;0 \right\};\ \ \overrightarrow{D_{1}B}\left\{ 2;1; - 3 \right\}:\]
\[\cos{\angle\left( \overrightarrow{\text{AC}};\overrightarrow{D_{1}B} \right)} =\]
\[= \frac{| - 4 + 1|}{\sqrt{4 + 1} \cdot \sqrt{4 + 1 + 9}} = \frac{3}{\sqrt{70}}.\]
\[\textbf{б)}\ \overrightarrow{AB_{1}}\left\{ 0;1;3 \right\};\ \ \overrightarrow{BC_{1}}\left\{ - 2;0;3 \right\}:\]
\[\cos{\angle\left( \overrightarrow{AB_{1}};\overrightarrow{BC_{1}} \right)} =\]
\[= \frac{|0 + 0 + 9|}{\sqrt{1 + 9} \cdot \sqrt{4 + 9}} = \frac{9}{\sqrt{130}}\text{.\ }\]
\[\textbf{в)}\ \overrightarrow{A_{1}D}\left\{ - 2;0;3 \right\};\ \ \overrightarrow{AC_{1}}\left\{ - 2;1;3 \right\}:\ \]
\[\cos{\angle\left( \overrightarrow{A_{1}D};\overrightarrow{AC_{1}} \right)} =\]
\[= \frac{|4 - 9|}{\sqrt{4 + 9} \cdot \sqrt{4 + 1 + 9}} =\]
\[= \frac{5}{\sqrt{13} \cdot \sqrt{14}} = \frac{5}{\sqrt{182}}.\]