Решебник по геометрии 10 класс Атанасян ФГОС 692

Авторы:
Год:2023
Тип:учебник

692

\[\boxed{\mathbf{692.}еуроки - ответы\ на\ пятёрку}\]

\[Формула:\]

\[\cos\alpha =\]

\[= \frac{x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}}{\sqrt{x_{1}^{2} + y_{1}^{2} + z_{1}^{2}} \cdot \sqrt{x_{2}^{2} + y_{2}^{2} + z_{2}^{2}}}.\]

\[\textbf{а)}\ \overrightarrow{a}\left\{ 2; - 2;0 \right\};\ \ \overrightarrow{b}\left\{ 3;0; - 3 \right\}:\]

\[\cos{\angle\left( \overrightarrow{a};\overrightarrow{b} \right)} =\]

\[= \frac{2 \cdot 3 - 2 \cdot 0 - 0 \cdot 3}{\sqrt{4 + 4 + 0} \cdot \sqrt{9 + 9 + 0}} =\]

\[= \frac{6}{\sqrt{8} \cdot \sqrt{18}} = \frac{6}{\sqrt{144}} = \frac{6}{12} = \frac{1}{2};\]

\[\angle\left( \overrightarrow{a};\overrightarrow{b} \right) = 60{^\circ}.\]

\[\textbf{б)}\ \overrightarrow{a}\left\{ \sqrt{2};\sqrt{2};2 \right\};\ \ \overrightarrow{b}\left\{ - 3; - 3;0 \right\}:\]

\[\cos{\angle\left( \overrightarrow{a};\overrightarrow{b} \right)} =\]

\[= \frac{- \sqrt{2} \cdot 3 - \sqrt{2} \cdot 3 - 2 \cdot 0}{\sqrt{2 + 2 + 4} \cdot \sqrt{9 + 9 + 0}} =\]

\[= - \frac{\sqrt{2} \cdot 6}{\sqrt{144}} = - \frac{\sqrt{2}}{2};\]

\[\angle\left( \overrightarrow{a};\overrightarrow{b} \right) = 180{^\circ} - 45{^\circ} = 135{^\circ}.\]

\[\textbf{в)}\ \overrightarrow{a}\left\{ 0;5;0 \right\};\ \ \overrightarrow{b}\left\{ 0; - \sqrt{3};1 \right\}:\]

\[\cos{\angle\left( \overrightarrow{a};\overrightarrow{b} \right)} =\]

\[= \frac{0 \cdot 0 - 5 \cdot \sqrt{3} - 0 \cdot 1}{\sqrt{0 + 25 + 0} \cdot \sqrt{0 + 3 + 1}} =\]

\[= \frac{- 5\sqrt{3}}{5 \cdot 2} = - \frac{\sqrt{3}}{2};\]

\[\angle\left( \overrightarrow{a};\overrightarrow{b} \right) = 180{^\circ} - 30{^\circ} = 150{^\circ}.\]

\[\textbf{г)}\ \overrightarrow{a}\left\{ - 2,5;2,5;0 \right\};\ \ \overrightarrow{b}\left\{ - 5;5;5\sqrt{2} \right\}:\]

\[\cos{\angle\left( \overrightarrow{a};\overrightarrow{b} \right)} =\]

\[= \frac{2,5 \cdot 5 + 2,5 \cdot 5 - 0 \cdot 5\sqrt{2}}{\sqrt{6,25 + 6,25} \cdot \sqrt{25 + 25 + 50}} =\]

\[= \frac{25}{\sqrt{\frac{25}{2}} \cdot 10} = \frac{\sqrt{2} \cdot 25}{50} = \frac{\sqrt{2}}{2};\]

\[\angle\left( \overrightarrow{a};\overrightarrow{b} \right) = 45{^\circ}.\]

\[\textbf{д)}\ \overrightarrow{a}\left\{ - \sqrt{2}; - \sqrt{2}; - 2 \right\};\ \ \]

\[\overrightarrow{b}\left\{ \frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}; - 1 \right\}:\]

\[\cos{\angle\left( \overrightarrow{a};\overrightarrow{b} \right)} =\]

\[= \frac{- \sqrt{2} \cdot \frac{\sqrt{2}}{2} - \sqrt{2} \cdot \frac{\sqrt{2}}{2} + 2 \cdot 1}{\sqrt{2 + 2 + 4} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} + 1}} =\]

\[= \frac{0}{\sqrt{16}} = 0;\]

\[\angle\left( \overrightarrow{a};\overrightarrow{b} \right) = 90{^\circ}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам