\[\boxed{\mathbf{64.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Доказательство.\]
\[1)\ Прямые\ A_{1}A_{2}\ и\ C_{1}C_{2}\ задают\ \]
\[плоскость\ A_{1}C_{1}C_{2}.\]
\[По\ свойству\ параллельности\ \]
\[плоскостей:\]
\[A_{1}C_{1} \parallel A_{2}C_{2}.\]
\[Аналогично:\]
\[A_{1}B_{1} \parallel A_{2}B_{2};\]
\[B_{1}C_{1} \parallel B_{2}C_{2}.\]
\[2)\ ⊿OA_{2}C_{1}\sim ⊿OA_{2}C_{2} - по\ двум\ \]
\[углам:\]
\[\angle 1 = \angle 2;\]
\[\angle 3 = \angle 4.\]
\[Из\ подобия\ треугольников:\]
\[\frac{A_{1}C_{1}}{A_{2}C_{2}} = \frac{OA_{1}}{OA_{2}} = \frac{OC_{1}}{OC_{2}}.\]
\[3)\ ⊿OA_{1}B_{1}\sim ⊿OA_{2}B_{2}:\]
\[\frac{A_{1}B_{1}}{A_{2}B_{2}} = \frac{OA_{1}}{OA_{2}} = \frac{OB_{1}}{OB_{2}}.\]
\[4)\ ⊿OB_{1}C_{1}\sim ⊿OB_{2}C_{2}:\]
\[\frac{B_{1}C_{1}}{B_{2}C_{2}} = \frac{OB_{1}}{OB_{2}} = \frac{OC_{1}}{OC_{2}}.\]
\[5)\ Из\ всех\ соотношений\ \]
\[получаем:\]
\[\frac{A_{1}C_{1}}{A_{2}C_{2}} = \frac{A_{1}B_{1}}{A_{2}B_{2}} = \frac{B_{1}C_{1}}{B_{2}C_{2}}.\]
\[Следовательно:\]
\[⊿A_{1}B_{1}C_{1}\sim ⊿A_{2}B_{2}C_{2}.\]
\[Что\ и\ требовалось\ доказать.\]