\[\boxed{\mathbf{602.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\ \ \]
\[ABCD - параллелограмм;\]
\[O - не\ принадлежит\ ABCD;\]
\[AM = MB;\]
\[MK = KD.\]
\[Разложить:\ \ \]
\[векторы\ \overrightarrow{\text{OM}}\ и\ \overrightarrow{\text{OK}}\ по\ векторам\ \]
\[\overrightarrow{a} = \overrightarrow{\text{OA}};\ \ \overrightarrow{b} = \ \overrightarrow{\text{OB}};\ \ \overrightarrow{c} = \overrightarrow{\text{OC}}.\]
\[Найти:\]
\[длину\ \overrightarrow{\text{AK}},\ если\ ребро\ куба\ \]
\[равно\ \text{m.}\]
\[Решение.\]
\[1)\ \overrightarrow{\text{OM}} = \overrightarrow{\text{OA}} + \overrightarrow{\text{AM}} = \overrightarrow{\text{OB}} + \overrightarrow{\text{BM}}\text{.\ \ }\]
\[\overrightarrow{\text{AM}} = - \overrightarrow{\text{BM}}:\]
\[2\overrightarrow{\text{OM}} = \overrightarrow{\text{OA}} + \overrightarrow{\text{OB}}.\]
\[Отсюда:\]
\[\overrightarrow{\text{OM}} = \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b} + 0 \bullet \overrightarrow{c}.\]
\[2)\ \overrightarrow{\text{OM}} = \overrightarrow{\text{OK}} + \overrightarrow{\text{KM}}\ \ и\ \ \]
\[\overrightarrow{\text{KM}} = \frac{1}{2}\overrightarrow{\text{DM}}:\]
\[\overrightarrow{\text{OK}} + \frac{1}{2}\overrightarrow{\text{DM}} = \overrightarrow{\text{OM}}.\]
\[3)\ \overrightarrow{\text{DM}} + \overrightarrow{\text{MB}} + \overrightarrow{\text{BC}} + \overrightarrow{\text{CD}} = \overrightarrow{0}:\]
\[\overrightarrow{\text{DM}} + \frac{1}{2}\overrightarrow{\text{AB}} + \overrightarrow{\text{BC}} + \overrightarrow{\text{CD}} = \overrightarrow{0}.\]
\[4)\ \overrightarrow{\text{OA}} + \overrightarrow{\text{AB}} = \overrightarrow{\text{OB}}:\]
\[\overrightarrow{\text{AB}} = \overrightarrow{\text{OB}} - \overrightarrow{\text{OA}} = \overrightarrow{b} - \overrightarrow{a}.\]
\[\overrightarrow{\text{OB}} + \overrightarrow{\text{BC}} = \overrightarrow{\text{OC}}:\]
\[\overrightarrow{\text{BC}} = \overrightarrow{\text{OC}} - \overrightarrow{\text{OB}} = \overrightarrow{c} - \overrightarrow{b};\]
\[\overrightarrow{\text{CD}} = - \overrightarrow{\text{AB}} = \overrightarrow{a} - \overrightarrow{b}.\]
\[5)\ \overrightarrow{\text{DM}} + \frac{1}{2}\overrightarrow{a} - \frac{3}{2}\overrightarrow{b} + \overrightarrow{c} + \overrightarrow{a} - \overrightarrow{b} =\]
\[= \overrightarrow{0}\]
\[\overrightarrow{\text{DM}} + \frac{1}{2}\overrightarrow{a} - \frac{3}{2}\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}\ \]
\[\overrightarrow{\text{DM}} = \frac{3}{2}\overrightarrow{b} - \frac{1}{2}\overrightarrow{a} - \overrightarrow{c}.\]
\[6)\ Получаем:\]
\[\overrightarrow{\text{OK}} + \frac{1}{2}\left( \frac{3}{2}\overrightarrow{b} - \frac{1}{2}\overrightarrow{a} - \overrightarrow{c} \right) =\]
\[= \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}\]
\[\overrightarrow{\text{OK}} =\]
\[= \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b} - \frac{3}{4}\overrightarrow{b} + \frac{1}{4}\overrightarrow{a} + \frac{1}{2}\overrightarrow{c} =\]
\[= \frac{3}{4}\overrightarrow{a} - \frac{1}{4}\overrightarrow{b} + \frac{1}{2}\overrightarrow{c}.\]
\[Ответ:\ \ \overrightarrow{\text{OM}} = \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b} + 0 \bullet \overrightarrow{c};\ \ \]
\[\overrightarrow{\text{OK}} = \frac{3}{4}\overrightarrow{a} - \frac{1}{4}\overrightarrow{b} + \frac{1}{2}\overrightarrow{c}.\]