\[\boxed{\mathbf{537.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\text{ABC}A_{1}B_{1}C_{1} - усеченная\ \]
\[пирамида;\]
\[OH_{1} = OH;\]
\[MNK - сечение;\]
\[O \in MNK;\]
\[\frac{a}{b} = \frac{5}{2}.\]
\[Найти:\]
\[\frac{V_{1}}{V_{2}}.\]
\[Решение.\]
\[1)\ Пусть\ AC = a\ \ и\ \ A_{1}C_{1} = b:\]
\[\frac{\text{AC}}{A_{1}C_{1}} = \frac{a}{b} = \frac{5}{2}.\]
\[2)\ В\ трапеции\ A_{1}H_{1}HA:\ \ \]
\[MO\bot H_{1}H;\ \]
\[MO \parallel AH \parallel A_{1}H_{1}.\]
\[Отсюда:\ \]
\[OH_{1} = OH.\]
\[3)\ В\ трапеции\ AA_{1}CC_{1}:\ \ \]
\[MK - средняя\ линия\ \]
\[(MK \parallel AC \parallel A_{1}C_{1});\]
\[MK = \frac{AC + A_{1}C_{1}}{2} = \frac{a + b}{2} =\]
\[= \frac{a + \frac{2}{5}a}{2} = \frac{7}{10}\text{a.}\]
\[4)\ \mathrm{\Delta}ABC\sim\mathrm{\Delta}MKN\sim\mathrm{\Delta}A_{1}B_{1}C_{1}\ \]
\[(соответствующие\ стороны\ \]
\[лежат\ в\ параллельных\ \]
\[плоскостях).\]
\[5)\ \frac{S_{\text{ABC}}}{S_{A_{1}B_{1}C_{1}}} = \left( \frac{a}{b} \right)^{2} = \frac{25}{4}:\ \]
\[S_{A_{1}B_{1}C_{1}} = 0,16\ S_{\text{ABC}}.\]
\[\frac{S_{\text{ABC}}}{S_{\text{MNK}}} = \frac{AC^{2}}{MK^{2}} = a^{2} \bullet \frac{100}{49a^{2}} = \frac{100}{49}:\]
\[S_{\text{MKN}} = 0,49\ S_{\text{ABC}}.\]
\[\mathbf{Отв}ет:\ \ \frac{31}{73}.\]