\[\boxed{\mathbf{353.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[Найти:\]
\[S_{сеч}.\]
\[Решение.\]
\[\textbf{а)}\ BC - хорда.\]
\[OK\bot BC;\ \ SK\bot BC:\]
\[\angle COB = 60{^\circ};\ \ \]
\[⊿COK - прямоугольный:\]
\[\angle COK = 30{^\circ};\]
\[CK = \frac{\text{OC}}{2} = \frac{r}{2};\]
\[S_{сеч} = S_{\text{BSC}} = \frac{1}{2}CB \cdot SK.\]
\[По\ теореме\ Пифагора\ \]
\[(из\ ⊿SOK):\]
\[SK^{2} = SO^{2} + OK^{2}.\]
\[По\ теореме\ Пифагора\ \]
\[(из\ ⊿CSK):\]
\[SK = \sqrt{CS^{2} - CK^{2}} =\]
\[= \sqrt{l^{2} - \left( \frac{r}{2} \right)^{2}} = \frac{\sqrt{4l^{2} - r^{2}}}{2}.\]
\[S_{сеч} = \frac{1}{2}r \cdot \frac{\sqrt{4l^{2} - r^{2}}}{2} =\]
\[= \frac{r}{4}\sqrt{4l^{2} - r^{2}}.\]
\[\textbf{б)}\ \angle COB = 90{^\circ};\ \ \angle COK = 45{^\circ}.\]
\[По\ теореме\ Пифагора:\]
\[OC^{2} = 2CK^{2}\]
\[CK = \frac{\text{OC}}{\sqrt{2}} = \frac{r}{\sqrt{2}}.\]
\[CB = 2CK = \frac{2r}{\sqrt{2}} = \sqrt{2}\text{r.}\]
\[По\ теореме\ Пифагора:\]
\[SK = \sqrt{l^{2} - \left( \frac{r}{\sqrt{2}} \right)^{2}} = \sqrt{\frac{2l^{2} - r^{2}}{2}}.\]
\[S_{сеч} = \frac{1}{2} \cdot \sqrt{2}r \cdot \frac{\sqrt{2l^{2} - r^{2}}}{\sqrt{2}} =\]
\[= \frac{r}{2}\sqrt{2l^{2} - r^{2}}.\]