\[\boxed{\mathbf{325.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\frac{S_{осн}}{S_{сеч}} = \frac{\sqrt{3}\pi}{4}.\]
\[Решение.\]
\[S_{осн} = \pi R^{2};\ \ S_{сеч} = 2Rh:\]
\[\frac{\pi R^{2}}{2Rh} = \frac{\sqrt{3}\pi}{4}\]
\[\frac{R}{h} = \frac{\sqrt{3}}{2}.\]
\[\textbf{а)}\ tg\ \alpha = \frac{2R}{h} = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3};\]
\[\alpha = arctg\sqrt{3}\]
\[\alpha = 60{^\circ}.\]
\[\gamma = 90{^\circ} - \alpha = 30{^\circ}.\]
\[\textbf{б)}\ \angle\beta = 180{^\circ} - 2 \cdot 30{^\circ} = 120{^\circ}\]
\[\angle B_{1}AB = 30{^\circ};\]
\[\angle A_{1}BA = 30{^\circ};\]
\[\angle AOA_{1} = 60{^\circ}.\]
\[Ответ:а)\ 30{^\circ};\ \ б)\ 60{^\circ}.\]