\[\boxed{Вариант\ 2.}\]
\[\boxed{\mathbf{1.}}\]
\[a_{1} = - 3;\ \ a_{n + 1} = a_{n} + 2;\]
\[d = 2:\]
\[a_{6} = a_{1} + 5d = - 3 + 2 \cdot 5 = 7.\]
\[Ответ:2).\]
\[\boxed{\mathbf{2.}}\]
\[a_{8} = 5;\ \ a_{10} = 13:\]
\[a_{8} = a_{1} + 7d \Longrightarrow a_{1} = a_{8} - 7d;\]
\[a_{10} = a_{1} + 9d \Longrightarrow a_{1} = a_{10} - 9d.\]
\[a_{8} - 7d = a_{10} - 9d\]
\[5 - 7d = 13 - 9d\]
\[- 7d + 9d = 13 - 5\]
\[2d = 8\]
\[d = 4.\]
\[a_{1} = 5 - 7 \cdot 4 = 5 - 28 = - 23.\]
\[Ответ:1).\]
\[\boxed{\mathbf{3.}}\]
\[b_{1} = 1;\ \ b_{4} = \frac{1}{8}:\]
\[b_{4} = b_{1} \cdot q^{3} \Longrightarrow q^{3} = \frac{b_{4}}{b_{1}};\]
\[q^{3} = \frac{1}{8}\ :1 = \frac{1}{8}\]
\[q = \frac{1}{2}.\]
\[S_{6} = \frac{b_{1}\left( 1 - q^{n} \right)}{1 - q} = \frac{1 \cdot \left( 1 - \left( \frac{1}{2} \right)^{6} \right)}{1 - \frac{1}{2}} =\]
\[= \frac{1 - \frac{1}{64}}{\frac{1}{2}} = \frac{63}{64}\ :\frac{1}{2} = \frac{63 \cdot 2}{64} = \frac{63}{32}.\]
\[Ответ:4).\]
\[\boxed{\mathbf{4.}}\]
\[a_{1} + a_{2} = 132;\ \ \frac{a_{3}}{a_{1}} = 3:\]
\[1)\ a_{1} + a_{1} + d = 132\]
\[2a_{1} + d = 132\]
\[2a_{1} = 132 - d.\]
\[2)\ a_{3} = 3a_{1}\]
\[a_{1} + 2d = 3a_{1}\]
\[2a_{1} = 2d.\]
\[3)\ 132 - d = 2d\]
\[3d = 132\]
\[d = 44.\]
\[4)\ 2a_{1} = 2d = 88\]
\[a_{1} = 44.\]
\[a_{2} = 44 + 44 = 88.\]
\[a_{3} = 88 + 44 = 132.\]
\[Наименьшее\ число:44.\]
\[Ответ:44.\]
\[\boxed{\mathbf{5.}}\]
\[b_{6} - b_{4} = 144:\]
\[b_{1}q^{5} - b_{1}q^{3} = b_{1}q^{3}\left( q^{2} - 1 \right) =\]
\[= q \cdot b_{1}q^{2}\left( q^{2} - 1 \right) = 144.\]
\[b_{5} - b_{3} = 48:\]
\[b_{1}q^{4} - b_{1}q^{2} = b_{1}q^{2}\left( q^{2} - 1 \right) = 48.\]
\[q \cdot 48 = 144\]
\[q = \frac{144}{48} = 3.\]
\[b_{1} \cdot (3)^{2} \cdot \left( 3^{2} - 1 \right) = 48\]
\[9b_{1} \cdot 8 = 48\]
\[9b_{1} = 6\]
\[b_{1} = \frac{6}{9}\]
\[b_{1} = \frac{2}{3}.\]
\[Ответ:\ \frac{2}{3};\ \ 3.\]
\[\boxed{\mathbf{6.}}\]
\[\left\{ \begin{matrix} y \geq (x - 1)^{2}\text{\ \ \ \ } \\ 2x - y + 5 \geq 0 \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} y \geq (x - 1)^{2} \\ y \leq 2x + 5\ \ \ \\ \end{matrix} \right.\ \]