\[\boxed{Вариант\ 1.}\]
\[\boxed{\mathbf{1.}}\]
\[a_{1} = 3;\ \ a_{n + 1} = a_{n} - 2\]
\[d = - 2:\]
\[a_{5} = a_{1} + 4d = 3 + 4 \cdot ( - 2) =\]
\[= 3 - 8 = - 5.\]
\[Ответ:4).\]
\[\boxed{\mathbf{2.}}\]
\[a_{3} = 2;\ \ a_{7} = 14:\]
\[a_{3} = a_{1} + 2d \Longrightarrow a_{1} = a_{3} - 2d;\]
\[a_{7} = a_{1} + 6d \Longrightarrow a_{1} = a_{7} - 6d.\]
\[a_{3} - 2d = a_{7} - 6d\]
\[2 - 2d = 14 - 6d\]
\[- 2d + 6d = 14 - 2\]
\[4d = 12\]
\[d = 3.\]
\[a_{1} = 2 - 2d = 2 - 2 \cdot 3 = - 4.\]
\[Ответ:2).\]
\[\boxed{\mathbf{3.}}\]
\[b_{1} = 1;\ \ b_{6} = \frac{1}{243}:\]
\[b_{6} = b_{1} \cdot q^{5} \Longrightarrow q^{5} = \frac{b_{6}}{b_{1}}\]
\[q^{5} = \frac{1}{243}\ :1 = \frac{1}{243}\]
\[q = \frac{1}{3}.\]
\[S_{5} = \frac{b_{1}\left( 1 - q^{n} \right)}{1 - q} = \frac{1 \cdot \left( 1 - \left( \frac{1}{3} \right)^{5} \right)}{1 - \frac{1}{3}} =\]
\[= \frac{1 - \frac{1}{243}}{\frac{2}{3}} = \frac{242}{243} \cdot \frac{3}{2} = \frac{121}{81}.\]
\[Ответ:3).\]
\[\boxed{\mathbf{4.}}\]
\[S_{3} = 87;\ \ a_{3} + 5 = a_{1} + a_{2}.\]
\[a_{n} = a_{1} + d(n - 1)\]
\[a_{2} = a_{1} + d\]
\[a_{3} = a_{1} + 2d\]
\[a_{1} + a_{2} + a_{3} = a_{1} + a_{1} + d + a_{2} + 2d =\]
\[= 3a_{1} + 3d = 87\]
\[3 \cdot \left( a_{1} + d \right) = 87\]
\[a_{1} + d = 29 \Longrightarrow a_{1} = 29 - d.\]
\[a_{1} + 2d + 5 = a_{1} + a_{1} + d\]
\[- a_{1} + d + 5 = 0 \Longrightarrow a_{1} = d + 5.\]
\[29 - d = d + 5\]
\[2d = 24\]
\[d = 12.\]
\[a_{1} = 29 - 12 = 17.\]
\[a_{2} = 17 + 12 = 29.\]
\[a_{3} = 29 + 12 = 41.\]
\[Ответ:наибольшее\ число\ 41.\]
\[\boxed{\mathbf{5.}}\]
\[b_{6} - b_{4} = 8;\ \ b_{5} - b_{3} = 24.\]
\[b_{1}q^{5} - b_{1}q^{3} = b_{1}q^{3}\left( q^{2} - 1 \right) =\]
\[= q \cdot b_{1}q^{2}\left( q^{2} - 1 \right) = 8;\]
\[b_{1}q^{4} - b_{1}q^{2} = b_{1}q^{2}\left( q^{2} - 1 \right) = 24.\]
\[\left\{ \begin{matrix} q \cdot 24 = 8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ b_{1}q^{2}\left( q^{2} - 1 \right) = 24 \\ \end{matrix} \right.\ \]
\[q = \frac{8}{24} = \frac{1}{3}:\]
\[b_{1} \cdot \left( \frac{1}{3} \right)^{2}\left( \left( \frac{1}{3} \right)^{2} - 1 \right) = 24\]
\[\frac{1}{9}b_{1}\left( \frac{1}{9} - 1 \right) = 24\]
\[- \frac{8}{9}b_{1} = 24 \cdot 9\]
\[b_{1} = - \frac{24 \cdot 9 \cdot 9}{8} = - 3 \cdot 81\]
\[b_{1} = - 243.\]
\[Ответ:\ - 243;\ \frac{1}{3}.\]
\[\boxed{\mathbf{6.}}\]
\[\left\{ \begin{matrix} xy - 4 \geq 0\ \ \ \ \ \ \ \ \\ x^{2} + y - 2 \leq 0 \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} y \geq \frac{4}{x}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ } \\ y \leq - x^{2} + 2 \\ \end{matrix} \right.\ \]