Решебник самостоятельные и по алгебре 9 класс Глазков контрольные работы КР-6. В формате ОГЭ Вариант 2

Авторы:
Тип:контрольные и самостоятельные
Серия:Учебно-методический комплект

Вариант 2

\[\boxed{Вариант\ 2.}\]

\[\boxed{\mathbf{1.}}\]

\[9,3 \cdot 5,4 - 5,4 \cdot 4,3 = 5,4 \cdot (9,3 - 4,3) =\]

\[= 5,4 \cdot 5 = 27.\]

\[Ответ:27.\]

\[\boxed{\mathbf{2.}}\]

\[2\sqrt{7} = \sqrt{28};\ \ \sqrt{33};\ \ 6 = \sqrt{36};\ \ 4\sqrt{2} = \sqrt{32}.\]

\[Наименьшее\ число:2\sqrt{7}.\]

\[Ответ:1.\]

\[\boxed{\mathbf{3.}}\]

\[1)\ \frac{\left( c^{4} \right)^{4} \cdot c^{- 1}}{c^{5}} = c^{16} \cdot c^{- 6} = c^{10}\]

\[2)\ \frac{\left( c^{- 4} \right)^{2} \cdot c^{14}}{c^{3}} = c^{- 8} \cdot c^{11} = c^{3}\]

\[3)\ \frac{\left( c^{- 4} \right)^{- 4} \cdot c^{14}}{c^{3}} = c^{16} \cdot c^{11} = c^{27}\]

\[4)\ \frac{\left( c^{- 4} \right)^{2} \cdot c^{14}}{c^{- 3}} = c^{- 8} \cdot c^{17} = c^{9}\]

\[Ответ:2.\]

\[\boxed{\mathbf{4.}}\]

\[7 - 6x = 22 - 2 \cdot (x + 3)\]

\[7 - 6x = 22 - 2x - 6\]

\[- 6x + 2x = 16 - 7\]

\[- 4x = 9\]

\[x = - \frac{9}{4} = - 2,25.\]

\[Ответ:\ - 2,25.\]

\[\boxed{\mathbf{5.}}\]

\[А\] \[Б\] \[В\]
\[2\] \[4\] \[1\]

\[\boxed{\mathbf{6.}}\]

\[- 0,25;\ - 1;\ - 4;\ldots\]

\[b_{1} = - 0,25;\ \ b_{2} = - 1:\]

\[q = \frac{b_{2}}{b_{1}} = \frac{- 1}{- 0,25} = \frac{100}{25} = 4.\]

\[S_{5} = \frac{b_{1}\left( q^{n} - 1 \right)}{q - 1} = \frac{- 0,25 \cdot \left( 4^{5} - 1 \right)}{4 - 1} =\]

\[= \frac{- \frac{1}{4} \cdot (1024 - 1)}{3} = \frac{- 1023}{3 \cdot 4} =\]

\[= \frac{- 341}{4} = - 85,25.\]

\[Ответ:\ - 85,25.\]

\[\boxed{\mathbf{7.}}\]

\[\frac{4x^{2}}{2x - 3} + \frac{9}{3 - 2x} - 2x - 8 =\]

\[= \frac{4x^{2}}{2x - 3} - \frac{9}{2x - 3} - (2x + 8)^{\backslash 2x - 3} =\]

\[= \frac{4x^{2} - 9 - 4x^{2} - 16x + 6x + 24}{2x - 3} =\]

\[= \frac{- 10x + 15}{2x - 3} = \frac{- 5 \cdot (2x - 3)}{2x - 3} = - 5.\]

\[Ответ:\ - 5.\]

\[\boxed{\mathbf{8.}}\]

\[\frac{1 - 2x}{x - 3} + 1^{\backslash x - 3} \geq 0\]

\[\frac{1 - 2x + x - 3}{x - 3} \geq 0\]

\[\frac{- x - 2}{x - 3} \geq 0;\ \ \ \ x \neq - 3\]

\[- 2 \leq x < 3.\]

\[Ответ:3.\]

\[\boxed{\mathbf{9.}}\]

\[Ответ:4.\]

\[(В\ ответах\ ошибка,\ обратите\ на\ это\ \]

\[внимание).\]

\[\boxed{\mathbf{10.}}\]

\[Ответ:\ - 9{^\circ}С.\]

\[\boxed{\mathbf{11.}}\]

\[1920\ рублей - 120\%\]

\[x\ рублей - 100\%\]

\[x = \frac{1920 \cdot 100}{120} = 16 \cdot 100 =\]

\[= 1600\ (рублей) - вкладчик\ внес\ на\ \]

\[счет.\]

\[Ответ:1600\ рублей.\]

\[\boxed{\mathbf{12.}}\]

\[Ответ:23.\]

\[\boxed{\mathbf{13.}}\]

\[1000 - 15 = 985\ (ручек) - пишут\ \]

\[хорошо.\]

\[Вероятность,\ что\ случайно\ выбранная\]

\[ручка\ пишет\ хорошо:\]

\[\frac{985}{1000} = 0,985.\]

\[Ответ:0,985.\]

\[\boxed{\mathbf{14.}}\]

\[Q = \frac{U^{2}t}{R} \Longrightarrow R = \frac{U^{2}t}{Q}\text{\ \ }\]

\[t = 5\ с;\ \ U = 10В;\ \ Q = 2000\ Дж:\]

\[R = \frac{10^{2} \cdot 5}{2000} = \frac{500}{2000} = \frac{1}{4} = 0,25\ Ом.\]

\[Ответ:0,25\ Ом.\]

\[\boxed{\mathbf{15.}}\]

\[\frac{b^{2} - c^{2}}{\text{bc}}\ \ :\left( \frac{2^{\backslash c}}{b} + \frac{2^{\backslash b}}{c} \right) =\]

\[= \frac{b^{2} - c^{2}}{\text{bc}}\ :\frac{2c + 2b}{\text{bc}} = \frac{b^{2} - c^{2}}{\text{bc}} \cdot \frac{\text{bc}}{2c + 2b} =\]

\[= \frac{(b - c)(b + c)}{2(c + b)} = \frac{b - c}{2}\]

\[b = \sqrt{2} - 1;\ \ c = \sqrt{\left( 1 - \sqrt{2} \right)^{2}}:\]

\[\frac{\sqrt{2} - 1 - \left| 1 - \sqrt{2} \right|}{2} = \frac{\sqrt{2} - 1 - \sqrt{2} + 1}{2} = 0.\]

\[Ответ:0.\]

\[\boxed{\mathbf{16.}}\]

\[Пусть\ \text{x\ }\frac{км}{ч} - скорость\ течения;\]

\[(14 + x)\ \frac{км}{ч} - скорость\ лодки\ по\ \]

\[течению;\]

\[(14 - x)\ \frac{км}{ч} - скорость\ лодки\ \]

\[против\ течения.\]

\[Составим\ уравнение:\]

\[3 \cdot (14 + x) = 4 \cdot (14 - x)\]

\[42 + 3x = 56 - 4x\]

\[3x + 4x = 56 - 42\]

\[7x = 14\]

\[x = 2\ \left( \frac{км}{ч} \right) - скорость\ течения\ реки.\]

\[3 \cdot (14 + x) = 3 \cdot 16 = 48\ (км) -\]

\[проплывет\ лодка\ вниз\ по\ течению.\]

\[Ответ:48\ км.\]

\[\boxed{\mathbf{17.}}\]

\[y = \frac{\left( x^{2} - 1 \right)\left( x^{2} - 9 \right)}{x^{2} - 2x - 3} =\]

\[= \frac{(x - 1)(x + 1)(x - 3)(x + 3)}{(x + 1)(x - 3)} =\]

\[= (x - 1)(x + 3) = x^{2} - x + 3x - 3 =\]

\[= x^{2} + 2x - 3\]

\[x^{2} - 2x - 3 = (x + 1)(x - 3)\]

\[x_{1} + x_{2} = 2;\ \ x_{1} \cdot x_{2} = - 3\]

\[x_{1} = 3;\ \ \ x_{2} = - 1.\]

\[y = x^{2} + 2x - 3;\ \ x \neq - 1;\ \ x \neq 3.\]

\[y = c\ имеет\ с\ графиком\ одну\ общую\]

\[точку\ при:\]

\[c = 12.\]

\[Ответ:12.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам