\[\boxed{\text{99\ (99).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = 0,01x^{2}\ \ \ и\ \ \ \ y = 10x\]
\[0,01x^{2} = 10x\]
\[0,01x^{2} - 10x = 0\]
\[x(x - 1000) = 0\]
\[x_{1} = 0\ \ и\ \ \ x_{2} = 1000\]
\[y(1000) = 10 \cdot 1000 = 10\ 000.\]
\[Графики\ имеют\ еще\ одну\ \]
\[общую\ точку:(1000;10\ 000).\]
\[\boxed{\text{99.\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ y = x^{2} + 3x - 25\]
\[D(y) = ( - \infty; + \infty).\]
\[\textbf{б)}\ y = \sqrt{5 - 3x}\]
\[5 - 3x \geq 0\]
\[3x \leq 5\]
\[x \leq 0,6.\]
\[D(y) = ( - \infty;0,6\rbrack.\]
\[\textbf{в)}\ \ y = \frac{x^{2} - 1}{x + 1}\]
\[x + 1 \neq 0\]
\[x \neq - 1.\]
\[D(y) = ( - \infty; - 1) \cup ( - 1; + \infty).\]
\[\textbf{г)}\ y = \frac{x + 1}{x^{2} + 1}\]
\[x^{2} + 1 \neq 0\]
\[x^{2} \neq - 1\]
\[x - любое\ число.\ \]
\[D(y) = ( - \infty; + \infty).\]