\[\boxed{\text{797\ (797).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ 4x - 5x^{2} < 0\]
\[x(4 - 5x) < 0\]
\[x(5x - 4) > 0\]
\[x \in ( - \infty;\ 0) \cup (0,8;\ + \infty).\]
\[{б)\ 9x² \leq - 5x }{9x^{2} + 5x \leq 0}\]
\[x(9x + 5) \leq 0\]
\[x \in \left\lbrack - \frac{5}{9};0 \right\rbrack.\]
\[\textbf{в)}\ \ 6x² - x - 35 > 0\]
\[D = 1 + 840 = 841 = 29^{2}\]
\[x_{1,2} = \frac{1 \pm 29}{12};\]
\[x_{1} = 2,5;\ \ \ x_{2} = - 2\frac{1}{3}.\]
\[(x - 2,5)\left( x + 2\frac{1}{3} \right) > 0\]
\[x \in \left( - \infty;\ - 2\frac{1}{3} \right) \cup (2,5; + \infty).\]
\[\boxed{\text{797.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[2,6 < \sqrt{7} < 2,7;\ \ \ \ \ \]
\[\text{\ \ \ }2,2 < \sqrt{5} < 2,3;\]
\[\textbf{а)}\ \sqrt{7} + \sqrt{5}\]
\[2,6 + 2,2 < \sqrt{7} + \sqrt{5} < 2,7 + 2,3\]
\[4,8 < \sqrt{7} + \sqrt{5} < 5.\]
\[\textbf{б)}\ \sqrt{7} - \sqrt{5}\]
\[2,6 - 2,3 < \sqrt{7} - \sqrt{5} < 2,7 - 2,2\]
\[0,3 < \sqrt{7} - \sqrt{5} < 0,5.\]
\[\textbf{в)}\ \sqrt{35} = \sqrt{7} \cdot \sqrt{5};\]
\[2,6 \cdot 2,2 < \sqrt{35} < 2,7 \cdot 2,3\]
\[5,72 < \sqrt{35} < 6,21.\]