\[\boxed{\text{774\ (774).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[C_{12}^{4} \Longrightarrow 4\ маляра\ из\ 12.\]
\[C_{5}^{2} \Longrightarrow 2\ плотника\ из\ 5.\]
\[Найдем\ общее\ число:\]
\[C_{12}^{4} \cdot C_{5}^{2} = \frac{12!}{4! \cdot 8!} \cdot \frac{5!}{2! \cdot 3!} =\]
\[= \frac{9 \cdot 10 \cdot 11 \cdot 12 \cdot 4 \cdot 5}{2 \cdot 3 \cdot 4 \cdot 2} =\]
\[= 4950\ способов.\]
\[\boxed{\text{774.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[y = x^{2} - x + 4\ \ \ и\ \ y = \frac{4}{x},\]
\[\left\{ \begin{matrix} y = x^{2} - x + 4 \\ y = \frac{4}{x}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \Longrightarrow \right.\ \]
\[\Longrightarrow \left\{ \begin{matrix} y = \frac{4}{x}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ x^{2} - x + 4 = \frac{4}{x} \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} y = \frac{4}{x}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ x³ - x^{2} + 4x - 4 = 0 \\ \end{matrix} \right.\ \]
\[x^{3} - x^{2} + 4x - 4 = 0\]
\[x^{2}(x - 1) + 4 \cdot (x - 1) = 0\]
\[\left( x^{2} + 4 \right)(x - 1) = 0\]
\[x^{2} + 4 \neq 0\]
\[\left\{ \begin{matrix} x - 1 = 0 \\ y = \frac{4}{x}\text{\ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x = 1 \\ y = 4 \\ \end{matrix} \right.\ .\]
\[Ответ:графики\ пересекаются\ \]
\[в\ точке\ (1;4).\]