\[\boxed{\text{711\ (711).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[S_{n} = \frac{3}{4} \cdot \left( 5^{n} - 1 \right),\ \ \]
\[x_{1} = S_{1} = 3,\ \ \]
\[x_{2} = S_{2} - x_{1} = \frac{3}{4} \cdot 24 - 3 = 15,\]
\[x_{2} = x_{1} \cdot q,\ \ q = \frac{x_{2}}{x_{1}} = 5,\]
\[S_{n} = x_{1} \cdot \frac{q^{n} - 1}{q - 1} = 3 \cdot \frac{5^{n} - 1}{4} =\]
\[= \frac{3}{4} \cdot \left( 5^{n} - 1 \right) \Longrightarrow\]
\[\Longrightarrow геометрическая\ прогрессия.\]
\[\boxed{\text{711.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[= \frac{3}{9x² + 3x + 1}.\]