Решебник по алгебре 9 класс Макарычев Задание 710

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 710

Выбери издание
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение
 
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение

\[\boxed{\text{710\ (710).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[\textbf{а)}\ q = - \frac{1}{3},\ \ n = 5,\ \ \]

\[S_{n} = 20\frac{1}{3},\]

\[x_{1} = ?,\ \ x_{n} = ?\]

\[S_{5} = x_{1} \cdot \frac{q^{5} - 1}{q - 1}\]

\[x_{1} \cdot \frac{\left( - \frac{1}{3} \right)^{5} - 1}{- \frac{1}{3} - 1\ } = 20\frac{1}{3}\]

\[x_{1} = \frac{- \frac{1}{243} - 1}{- \frac{4}{3}} = \frac{61}{3}\]

\[x_{1} \cdot \frac{244}{243} \cdot \frac{3}{4} = \frac{61}{3}\]

\[x_{1} = \frac{61}{3} \cdot \frac{81}{61}\]

\[x_{5} = x_{1} \cdot q^{4} = 24 \cdot \frac{1}{3^{4}}\]

\[\textbf{б)}\ x_{1} = 11,\ \ x_{n} = 88,\ \ \]

\[S_{n} = 165,\]

\[q = ?,\ \ n = ?\]

\[x_{n} = x_{1} \cdot q^{n - 1} = 88,\]

\[q^{n - 1} = \frac{88}{11} = 8,\]

\[S_{n - 1} = x_{1} \cdot \frac{q^{n - 1} - 1}{q - 1} = S_{n} - x_{n}\]

\[11 \cdot \frac{q^{n - 1} - 1}{q - 1} = 165 - 88\]

\[\frac{77}{q - 1} = 77\]

\[x_{n} = x_{1} \cdot q^{n - 1}\]

\[88 = 11 \cdot 2^{n - 1}\]

\[2^{n - 1} = 8\]

\[n - 1 = 3\]

\[\textbf{в)}\ x_{1} = \frac{1}{2},\ \ q = - \frac{1}{2},\ \ \]

\[S_{n} = \frac{21}{64},\]

\[n = ?,\ \ x_{n} = ?\]

\[S_{n} = x_{1} \cdot \frac{q^{n} - 1}{q - 1},\]

\[\frac{21}{64} = \frac{1}{2} \cdot \frac{\left( - \frac{1}{2} \right)^{n} - 1}{- \frac{1}{2} - 1},\]

\[\frac{21}{32} = \frac{\left( - \frac{1}{2} \right)^{n} - 1}{- \frac{3}{2}},\]

\[- \frac{63}{64} = \left( - \frac{1}{2} \right)^{n} - 1\]

\[\left( - \frac{1}{2} \right)^{n} = \frac{1}{64}\]

\[x_{6} = x_{1} \cdot q^{5} = \frac{1}{2} \cdot \left( - \frac{1}{2} \right)^{5}\]

\[\textbf{г)}\ q = \sqrt{3},\ \ x_{n} = 18\sqrt{3},\ \ \]

\[S_{n} = 26\sqrt{3} + 24,\]

\[x_{1} = ?,\ \ n = ?\]

\[S_{n} = x_{1} \cdot \frac{q^{n} - 1}{q - 1} = 26\sqrt{3} + 24\]

\[\frac{18\sqrt{3} \cdot \sqrt{3} - x_{1}}{\sqrt{3} - 1} = 26\sqrt{3} + 24\]

\[54 - x_{1} = \left( 26\sqrt{3} + 24 \right)\left( \sqrt{3} - 1 \right)\]

\[54 - x_{1} =\]

\[= 26 \cdot 3 - 26\sqrt{3} + 24\sqrt{3} - 24\]

\[18\sqrt{3} = 2\sqrt{3} \cdot \left( \sqrt{3} \right)^{n - 1}\]

\[\left( \sqrt{3} \right)^{n - 1} = 9\]

\[n - 1 = 4\]

Издание 2
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{710.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]

\[= \frac{10 - 2m}{m - 3}\]

\[a^{2} + 3a - 10 = (a - 2)(a + 5)\]

\[x_{1} + x_{2} = - 3;\ \ \ \ x_{1} \cdot x_{2} = - 10\]

\[x_{1} = 2;\ \ \ \ x_{2} = - 5.\]

\[= \frac{2 \cdot (x - 5)(x - 2)}{(x - 2)(x + 2)(x - 5)} =\]

\[= \frac{2}{x + 2}\]

\[2x^{2} - 14x + 20 =\]

\[= (x - 5)(x - 2)\]

\[D = 196 - 160 = 36\]

\[x_{1} = 5,\ \ x_{2} = 2.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам