\[\boxed{\text{680}\text{\ (680)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ a_{1} = - 10\frac{1}{2},\ \ a_{2} = - 10\frac{1}{4},\ \ \]
\[d = a_{2} - a_{1} = - 10\frac{1}{4} + 10\frac{1}{2} = - \frac{41}{4} + \frac{21}{2} = \frac{1}{4},\]
\[a_{n} = a_{1} + d(n - 1) > 0 \Longrightarrow\]
\[- 10\frac{1}{2} + \frac{1}{4}n - \frac{1}{4} > 0\]
\[\frac{1}{4}n > 10\frac{3}{4}\]
\[n > 43 \Longrightarrow n = 44,\]
\[a_{44} = - 10\frac{1}{2} + \frac{1}{4} \cdot (44 - 1) = - \frac{42}{4} + \frac{43}{4} = \frac{1}{4}.\]
\[\textbf{б)}\ a_{1} = 8\frac{1}{2},\ \ a_{2} = 8\frac{1}{3},\ \]
\[d = a_{2} - a_{1} = 8\frac{1}{3} - 8\frac{1}{2} = \frac{25}{3} - \frac{17}{2} = - \frac{1}{6},\]
\[a_{n} = \frac{25}{3} - \frac{1}{6} \cdot (n - 1) \Longrightarrow\]
\[\frac{25}{3} - \frac{n}{6} + \frac{1}{6} < 0\]
\[n > 50 + 1 \Longrightarrow n > 51 \Longrightarrow n = 52,\]
\[a_{52} = 8,5 - \frac{1}{6} \cdot (53 - 1) = - \frac{1}{6}.\]
\[\boxed{\text{680.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ b_{1} = 1,\ \ b_{2} = x,\]
\[q = \frac{b_{2}}{b_{1}} = x,\ \ n = 5,\]
\[S_{5} = b_{1} \cdot \frac{q^{5} - 1}{q - 1} = \frac{x^{5} - 1}{x - 1}.\]
\[\textbf{б)}\ b_{1} = 1,\ \ b_{2} = - x,\]
\[q = \frac{b_{2}}{b_{1}} = - x,\ \ n = 7,\]
\[S = b_{1} \cdot \frac{q^{7} - 1}{q - 1} = \frac{- x^{7} - 1}{- x - 1} =\]
\[= \frac{x^{7} + 1}{x + 1}.\]