\[\boxed{\text{663}\text{\ (663)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[n = 1 \Longrightarrow \frac{1}{3} \cdot 1 \cdot (1 + 1)(1 + 2) = \frac{2 \cdot 3}{3} = 2 = 1 \cdot 2 \Longrightarrow формула\ верна.\]
\[Допустим,\ что\ формула\ верна\ для\ n = k:\]
\[1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + .. + k \cdot (k + 1) = \frac{1}{3}k(k + 1)(k + 2) \Longrightarrow верно.\]
\[Приведем\ доказательство\ для\ n = k + 1:\]
\[1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + k(k + 1) + (k + 1)(k + 2) =\]
\[= \frac{1}{3}k \cdot (k + 1)(k + 2) + (k + 1)(k + 2) = \frac{(k + 1)(k + 2)(k + 3)}{3} =\]
\[= \frac{1}{3}k(k + 1)(k + 2)(k + 3) \Longrightarrow формула\ справедлива \Longrightarrow ч.т.д.\]
\[\boxed{\text{663.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[S_{10} = 100,\ \ S_{30} = 900,\]
\[S_{10} = \frac{2a_{1} + 9d}{2} \cdot 10 =\]
\[= 5 \cdot \left( 2a_{1} + 9d \right) = 100 \Longrightarrow\]
\[\Longrightarrow 2a_{1} + 9d = 20,\]
\[S_{30} = \frac{2a_{1} + 29d}{2} \cdot 30 =\]
\[= 15 \cdot \left( 2a_{1} + 29d \right) = 900 \Longrightarrow\]
\[\Longrightarrow 2a_{1} + 29d = 60,\]
\[\left\{ \begin{matrix} 2a_{1} + 9d = 20\ \ \\ 2a_{1} + 29d = 60 \\ \end{matrix} \right.\ -\]
\[\left\{ \begin{matrix} 2a_{1} + 9d = 20 \\ 20d = 40\ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} d = 2 \\ a_{1} = 1 \\ \end{matrix} \right.\ \]
\[S_{40} = \frac{2a_{1} + 39d}{2} \cdot 40 =\]
\[= 20 \cdot (2 + 39 \cdot 2) = 1600.\]