\[\boxed{\text{657}\text{\ (657)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[b_{1} > 0,\ \ b_{2} > 0,\ \ldots,\ b_{n} > 0\ \]
\[b_{1} + b_{2} = b_{1} + b_{1} \cdot q = 8\]
\[b_{3} + b_{4} = b_{1} \cdot q^{2} + b_{1} \cdot q^{3} = 72;\]
\[\left\{ \begin{matrix} b_{1}(1 + q) = 8\ \ \ \ \ \ \ \ \ \ \\ b_{1} \cdot q^{2} \cdot (1 + q) = 72 \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} q^{2} = 9\ \ \ \ \ \ \ \\ b_{1} = \frac{8}{q + 1} \\ \end{matrix} \Longrightarrow \right.\ \left\{ \begin{matrix} q = 3\ \ \\ b_{1} = 2 \\ \end{matrix} \right.\ ,\ \ \]
\[q = - 3 \Longrightarrow не\ подходит\ по\ условию.\]
\[S_{n} = \frac{b_{1} \cdot \left( q^{n} - 1 \right)}{q - 1} = 2 \cdot \frac{3^{n} - 1}{2} = 3^{n} - 1 = 242 \Longrightarrow\]
\[\Longrightarrow 3^{n} = 243 \Longrightarrow n = 5.\]
\[Ответ:\ \ 5\ членов\ прогрессии\ нужно\ сложить.\]
\[\boxed{\text{657.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ a_{1} = 2,\ \ d = 2,\]
\[a_{n} = a_{1} + d(n - 1) =\]
\[= 2 + 2n - 2 = 2n\]
\[2n = 200 \Longrightarrow n = 100;\]
\[S_{100} = \frac{a_{1} + a_{100}}{2} \cdot 100 =\]
\[= (2 + 200) \cdot 50 = 10100.\]
\[\textbf{б)}\ a_{1} = 1,\ \ d = 2,\ \ \]
\[a_{n} = a_{1} + d(n - 1) =\]
\[= 1 + 2n - 2 = 2n - 1\]
\[2n - 1 = 149\]
\[2n = 150 \Longrightarrow n = 75,\]
\[S_{75} = \frac{a_{1} + a_{75}}{2} \cdot 75 =\]
\[= \frac{1 + 149}{2} \cdot 75 = 5625.\]
\[\textbf{в)}\ a_{1} = 102,\ \ d = 3,\]
\[a_{n} = a_{1} + d(n - 1) =\]
\[= 102 + 3n - 3 = 3n + 99 =\]
\[= 198\]
\[3n + 99 = 198\]
\[3n = 99\]
\[n = 33,\]
\[S_{33} = \frac{a_{1} + a_{33}}{2} \cdot 33 =\]
\[= \frac{102 + 198}{2} \cdot 33 = 150 \cdot 33 =\]
\[= 4950.\]