\[\boxed{\text{627\ (627).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)} - 2;\ - 6;\ldots\ \]
\[x_{1} = 2;\ \ x_{2} = x_{1} \cdot q = 2 \cdot ( - 3) = - 6;\ \ q = - 3\]
\[x_{n} = x_{1} \cdot q^{n - 1} = 2 \cdot ( - 3)^{n - 1}\ \]
\[x_{7} = 2 \cdot ( - 3)^{6} = 2 \cdot 729 = 1458.\]
\[\textbf{б)} - 40;\ - 20;\ldots\]
\[x_{1} = - 40;\ \ x_{2} = x_{1} \cdot q = - 20;\ \ \ \ - 40q = - 20;\ \ \ \ \ \ q = \frac{1}{2}\]
\[x_{n} = - 40 \cdot (0,5)^{n - 1}\ \]
\[\ x_{7} = - 40 \cdot \left( \frac{1}{2} \right)^{6} = - \frac{40}{64} = - \frac{5}{8}.\]
\[\textbf{в)} - 0,125;\ \ 0,25;\ \ldots\]
\[x_{1} = - 0,125;\ \ \ x_{2} = x_{1} \cdot q = 0,25;\ \ \ - 0,125q = 0,25;\]
\[q = - 2\ \ \]
\[x_{n} = - 0,125 \cdot ( - 2)^{n - 1}\ \]
\[x_{7} = - 0,125 \cdot ( - 2)^{6} = - 0,125 \cdot 64 = - 8.\]
\[\textbf{г)} - 10;\ \ 10;\ \ldots\]
\[x_{1} = - 10;\ \ \ \ x_{2} = - 10q = 10;\ \ \ \ q = - 1\ \]
\[x_{n} = \ - 10 \cdot ( - 1)^{n - 1}\text{\ \ }\]
\[x_{7} = - 10 \cdot ( - 1)^{6} = - 10.\]
\[\boxed{\text{627.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ 1,5x - x^{2} \leq 0\]
\[x(1,5 - x) \leq 0\]
\[x \in ( - \infty;0\rbrack \cup \lbrack 1,5; + \infty).\]
\[\textbf{б)}\ x² + x + 6 > 0\]
\[D = 1 - 4 \cdot 6 = - 23 < 0 \Longrightarrow\]
\[\Longrightarrow корней\ нет.\]
\[Так\ как\ графиком\ является\ \]
\[парабола,\ ветви\ которой\ \]
\[направлены\ вверх,то:\]
\[x \in ( - \infty; + \infty).\]