\[\boxed{\text{616}\text{\ (616)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x_{1} = 1,\ \ d = 1,\ \ n - номер\ ряда;\]
\[x_{n} - количество\ шаров\ в\ том\ ряду.\]
\[S_{n} = \frac{2x_{1} + d(n - 1)}{2} \cdot n = \frac{2 + n - 1}{2} \cdot 2 = \frac{n + 1}{2} \cdot n = 120;\]
\[n^{2} + n - 240 = 0\]
\[D = 1 + 4 \cdot 240 = 961\]
\[n_{1,2} = \frac{- 1 \pm 31}{2};\ \ так\ как\ n > 0 \Longrightarrow n = 15\ (рядов) - из\ 120\ шаров.\]
\[S_{30} = \frac{n + 1}{2} \cdot n = \frac{30 + 1}{2} \cdot 30 = 31 \cdot 15 = 465\ (шаров) - потребуется,\ \]
\[чтобы\ составить\ треугольник\ из\ 30\ рядов.\]
\[Ответ:15\ рядов;\ \ 465\ шаров.\]
\[\boxed{\text{616.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ 3; - 6;\ldots\ \]
\[b_{1} = 3,\ \ b_{2} = b_{1} \cdot q = - 6,\]
\[\ \ q = - 2:\]
\[S_{6} = b_{1} \cdot \frac{q^{6} - 1}{q - 1} = 3 \cdot \frac{64 - 1}{- 2 - 1} =\]
\[= 3 \cdot \frac{63}{- 3} = - 63.\]
\[\textbf{б)}\ 54;36;\ldots\ \]
\[b_{1} = 54,\ \ b_{2} = b_{1} \cdot q = 36,\]
\[\ \ q = \frac{36}{54} = \frac{2}{3}:\]
\[S_{6} = b_{1} \cdot \frac{q^{6} - 1}{q - 1} =\]
\[= 54 \cdot \frac{\left( \frac{2}{3} \right)^{6} - 1}{\frac{2}{3} - 1\ } = 54 \cdot \frac{\frac{64}{729} - 1}{- \frac{1}{3}} =\]
\[= \frac{54 \cdot 3 \cdot 664}{729} =\]
\[= \frac{1330}{9} = 147\frac{7}{9}.\]
\[\textbf{в)} - 32; - 16;\ldots\]
\[b_{1} = - 32,\ \ \]
\[b_{2} = b_{1} \cdot q = - 16,\ \ q = \frac{1}{2}:\]
\[S_{6} = b_{1} \cdot \frac{q^{6} - 1}{q - 1} =\]
\[= - 32 \cdot \frac{\left( \frac{1}{2} \right)^{6} - 1}{\frac{1}{2} - 1\ } =\]
\[= - 64 \cdot \frac{63}{64} = - 63.\]
\[\textbf{г)}\ 1;\ - \frac{1}{2};\ldots\ \]
\[b_{1} = 1,\ \ b_{2} = b_{1} \cdot q = - \frac{1}{2},\]
\[\ \ q = - \frac{1}{2}:\]
\[S_{6} = b_{1} \cdot \frac{q^{6} - 1}{q - 1} = \frac{\left( - \frac{1}{2} \right)^{6} - 1}{- \frac{1}{2} - 1} =\]
\[= - \frac{2}{3} \cdot \left( - \frac{63}{64} \right) = \frac{21}{32}.\]