\[\boxed{\text{606\ (}\text{с}\text{).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[S_{n} = \frac{\left( x_{1} + x_{n} \right) \cdot n}{2};\]
\[\textbf{а)}\ x_{n} = 4n + 2,\ \ x_{1} = 4 + 2 = 6,\ \]
\[S_{n} = \frac{(4n + 2 + 6)}{2} \cdot n = 2n^{2} + 4n,\]
\[S_{50} = 2 \cdot 50^{2} + 4 \cdot 50 = 5200;\]
\[S_{100} = 2 \cdot 100^{2} + 4 \cdot 100 = 20\ 400.\]
\[\textbf{б)}\ x_{n} = 2n + 3,\ \ x_{1} = 2 + 3 = 5,\ \]
\[S_{n} = \frac{(5 + 2n + 3)}{2} \cdot n = n^{2} + 4n;\]
\[S_{50} = 2500 + 200 = 2700;\]
\[S_{100} = 100² + 4 \cdot 100 = 10\ 400.\]
\[\boxed{\text{606.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[x_{1} = 2,0 \cdot 10^{4}\ м^{3};\ \]
\[\ q = 1,1\ (так\ как\ прирост\ 10\%).\]
\[x_{7} = 2 \cdot 10^{4} \cdot (1 + 0,1)^{6} \approx\]
\[\approx 35\ 431\ м^{3}.\]
\[Ответ:через\ 6\ лет\ количество\ \]
\[древесины\ на\ этом\ участке\ \]
\[будет\ равно\ 35\ 431\ м^{3}.\]