\[\boxed{\text{602\ (602).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ 125^{- 1} \cdot 25² = 5^{- 3} \cdot 5^{4} = 5;\]
\[\textbf{б)}\ 0,0001 \cdot \left( 10^{3} \right)^{2} \cdot (0,1)^{- 2} = 10^{- 4} \cdot 10^{6} \cdot 10² = 10^{4} = 10\ 000;\]
\[\textbf{в)}\ \frac{16^{- 3} \cdot 4^{5}}{8} = 2^{- 12} \cdot 2^{10} \cdot 2^{- 3} = 2^{- 5} = \frac{1}{32};\]
\[\textbf{г)}\ 9^{4} \cdot \left( \frac{1}{27} \right)^{- 3} \cdot 81^{- 4} = 3^{8} \cdot 3^{9} \cdot 3^{- 16} = 3.\ \]
\[\boxed{\text{602.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[b_{2} = b_{1} \cdot q = 6,\ \ \]
\[b_{4} = b_{1} \cdot q^{3} = 24,\ \ \]
\[\frac{b_{1}q^{3}}{b_{1}q} = \frac{24}{6};\ \]
\[q^{2} = 4,\ \ q = \pm 2;\]
\[1)\ q = 2,\ \ b_{1} = \frac{b_{2}}{q} = 3;\]
\[b_{6} = b_{1} \cdot q^{5} = 3 \cdot 2^{5} = 96;\]
\[2)\ q = - 2,\ \ b_{1} = \frac{b_{2}}{q} = - 3;\ \ \]
\[\ b_{6} = b_{1} \cdot q^{5} = - 96.\]