\[\boxed{\text{597\ (}\text{с}\text{).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[a_{n} = kn + b;\ \ \]
\[где\ \text{k\ }и\ b - некоторые\ числа,\ \]
\[является\]
\[арифметической\ прогрессией.\]
\[\textbf{а)}\ a_{n} = 3n + 1:\ \]
\[k = 3;\ \ b = 1;\ \]
\[d = k = 3\ \ \]
\[a_{1} = 3 + 1 = 4.\]
\[\textbf{б)}\ a_{n} = n² - 5,\ \ \]
\[a_{n} - a_{n - 1} =\]
\[= n^{2} - 5 - \left( (n - 1)^{2} - 5 \right) =\]
\[= n^{2} - 5 - \left( n^{2} - 2n + 1 - 5 \right) =\]
\[= 2n + 1\ \ \]
\[зависит\ от\ n \Longrightarrow не\ является\ \]
\[арифметической\ прогрессией.\]
\[\textbf{в)}\ a_{n} = n + 4:\ \]
\[k = d = 1\ \ \]
\[a_{1} = 1 + 4 = 5.\]
\[\textbf{г)}\ a_{n} = \frac{1}{n + 4}:\ \ \]
\[a_{n} - a_{n - 1} = \frac{1}{n + 4} - \frac{1}{n + 3} =\]
\[= \frac{n + 3 - n - 4}{(n + 4)(n + 3)} =\]
\[= \frac{- 1}{(n + 4)(n + 3)} \Longrightarrow\]
\[\Longrightarrow зависит\ от\ n \Longrightarrow не\ \]
\[прогрессия;\]
\[\textbf{д)}\ a_{n} = - 0,5n + 1:\ \ \]
\[k = d = - 0,5;\ \ \ \]
\[a_{1} = - 0,5 + 1 = 0,5.\]
\[\textbf{е)}\ a_{n} = 6:\ \ \]
\[a_{n} - a_{n - 1} = 6n - 6 \cdot (n - 1) =\]
\[= 6;\]
\[d = k = 6;\ \ \]
\[a_{1} = 6.\]
\[\boxed{\text{597.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ c_{5} = c_{1} \cdot q^{4} = - 6,\ \ \]
\[c_{7} = c_{1} \cdot q^{6} = - 54,\ \]
\[\Longrightarrow \frac{c_{1} \cdot q^{6}}{c_{1} \cdot q^{4}} = \frac{- 54}{- 6};\ \ \ \ q^{2} = 9,\]
\[\ \ q = \pm 3.\]
\[\textbf{б)}\ c_{6} = c_{1} \cdot q^{5} = 25,\ \ \]
\[c_{8} = c_{1} \cdot q^{7} = 4,\ \]
\[\frac{c_{8} \cdot q^{7}}{c_{6} \cdot q^{5}} = \frac{4}{25},\ \ q^{2} = \frac{4}{25},\]
\[\ \ q = \pm \frac{2}{5}.\]