\[\boxed{\text{592}\text{\ (592)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[a_{n} = a_{1} + d(n - 1) =\]
\[= 32 - 1,5n + 1,5 = 33,5 - 1,5n.\]
\[\textbf{а)}\ a_{1} = 32;\ \ d = - 1,5;\ \ a_{n} = 0:\]
\[\ 33,5 - 1,5n = 0\]
\[n = 22\frac{1}{3} - не\ целое\ число \Longrightarrow\]
\[\Longrightarrow арифметическая\ прогрессия\ \]
\[не\ содержит\ 0.\]
\[\textbf{б)}\ a_{1} = 32;\ \ d = - 1,5;\ \]
\[a_{n} = - 28:\]
\[33,5 - 1,5n = - 28\]
\[1,5n = 61,5\]
\[n = 41\]
\[a_{41} = - 28.\]
\[Арифметическая\ прогрессия\ \]
\[содержит\ число\ a_{41} = - 28.\]
\[\boxed{\text{592.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ 1,5;2,5;3,5;\ldots\]
\[a_{1} = 1,5;\ \ \ \ a_{2} = 2,5;\ \ \ \]
\[\ \ d = a_{2} - a_{1} = 2,5 - 1,5 = 1\]
\[b_{4} = a_{3} + d = 3,5 + 1 = 4,5\]
\[b_{5} = a_{4} + d = 4,5 + 1 = 5,5.\]
\[\textbf{б)}\ 8;4;2;\ldots\]
\[b_{2} = 4;\ \ \ \ b_{1} = 8;\ \]
\[\ q = \frac{b_{2}}{b_{1}} = \frac{4}{8} = \frac{1}{2}\]
\[b_{4} = b_{3} \cdot q = 2 \cdot \frac{1}{2} = 1;\]
\[b_{5} = b_{4} \cdot q = 1 \cdot \frac{1}{2} = \frac{1}{2} = 0,5.\]