\[\boxed{\text{591}\text{\ (591)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x_{1} = 2;\ \ x_{2} = 9\]
\[d = x_{2} - x_{1} = 7\ \]
\[x_{n} = x_{1} + d(n - 1),\]
\[x_{n} = 2 + 7n - 7 = 7n - 5\]
\[\textbf{а)}\ 156?\]
\[7n - 5 = 156\]
\[7n = 161\]
\[n = 23 - целое\ число,\ тогда:\]
\[a_{23} = 156.\]
\[\textbf{б)}\ 7n - 5 = 295\]
\[7n = 295\ \ \]
\[n = 42\frac{6}{7} - не\ целое\ число,\]
\[значит,\ арифметическая\ \]
\[прогрессия\ не\ содержит\ \]
\[число\ 295.\]
\[\boxed{\text{591.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[x_{n} = x_{1} \cdot q^{n - 1};\]
\[\textbf{а)}\ x_{1} = 16;\ \ q = \frac{1}{2}:\]
\[x_{7} = x_{1} \cdot q^{6} = 16 \cdot \left( \frac{1}{2} \right)^{6} =\]
\[= 2^{4} \cdot 2^{- 6} = 2^{- 2} = \frac{1}{4}.\]
\[\textbf{б)}\ x_{1} = - 810;\ \ q = \frac{1}{3}:\]
\[x_{8} = x_{1} \cdot q^{7} = - 810 \cdot \left( \frac{1}{3} \right)^{7} =\]
\[= - 10 \cdot 3^{4} \cdot 3^{- 7} = - \frac{10}{27}.\]
\[\textbf{в)}\ x_{1} = \sqrt{2};\ \ q = - \sqrt{2}:\]
\[x_{10} = x_{1} \cdot q^{9} = \sqrt{2} \cdot \left( - \sqrt{2} \right)^{9} =\]
\[= - \left( \sqrt{2} \right)^{10} = - 2^{5} = - 32.\]
\[\textbf{г)}\ x_{1} = - 125;\ \ q = 0,2:\]
\[x_{6} = x_{1} \cdot q^{5} = - 125 \cdot (0,2)^{5} =\]
\[= - 5^{3} \cdot \frac{1}{5^{5}} = - 5^{3} \cdot 5^{- 5} =\]
\[= - 5^{- 2} = - \frac{1}{25}.\]
\[\textbf{д)}\ x_{1} = \frac{3}{4};\ \ \ q = \frac{2}{3}:\]
\[x_{5} = x_{1} \cdot q^{4} = \frac{3}{4} \cdot \left( \frac{2}{3} \right)^{4} =\]
\[= \frac{3}{4} \cdot \frac{16}{81} = \frac{4}{27}.\]
\[\textbf{е)}\ x_{1} = 1,8 = \frac{18}{10} = \frac{9}{5};\ \ \ q = \frac{\sqrt{3}}{3}:\]
\[x_{4} = x_{1} \cdot q^{3} = \frac{9}{5} \cdot \left( \frac{\sqrt{3}}{3} \right)^{3} =\]
\[= \frac{9}{5} \cdot \frac{3\sqrt{3}}{27} = \frac{\sqrt{3}}{5}.\]