\[\boxed{\text{573}\text{\ (573)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ x² + x - 42 \leq 0\]
\[x^{2} + x - 42 = 0\]
\[x_{1} + x_{2} = - 1;\ \ \ \ \ x_{1} \cdot x_{2} = - 42\]
\[x_{1} = - 7;\ \ x_{2} = 6.\]
\[(x + 7)(x - 6) \leq 0\]
\[- 7 \leq x \leq 6.\]
\[\textbf{б)}\ (x + 11)(x + 4)(x - 1) > 0\]
\[x = - 11;\ \ x = - 4;\ \ x = 1\]
\[x \in ( - 11;\ - 4) \cup (1;\ + \infty).\]
\[\boxed{\text{573.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[S_{n} = \frac{\left( a_{1} + a_{n} \right)}{2} \cdot n,\]
\[a_{n} = 3n + 2;\ \ a_{1} = 3 + 2 = 5:\ \]
\[\textbf{а)}\ a_{20} = 60 + 2 = 62\ \ \]
\[S_{20} = \frac{5 + 62}{2} \cdot 20 = 67 \cdot 10 =\]
\[= 670.\]
\[\textbf{б)}\ a_{15} = 45 + 2 = 47\]
\[S_{15} = \frac{5 + 47}{2} \cdot 15 = \frac{52}{2} \cdot 15 =\]
\[= 26 \cdot 15 = 390.\]