\[\boxed{\text{572}\text{\ (572)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ 4x^{4} + 4x² - 15 = 0\]
\[Пусть\ t = x^{2},\ t \geq 0,\ тогда:\]
\[4t^{2} + 4t - 15 = 0\]
\[D = 4 + 4 \cdot 15 = 64\]
\[t_{1,2} = \frac{- 2 \pm 8}{4},\]
\[так\ как\ t \geq 0,\ то\ t = 1,5.\]
\[\Longrightarrow x^{2} = 1,5 \Longrightarrow x = \pm \sqrt{1,5}.\]
\[Ответ:x = \pm \sqrt{1,5}.\]
\[\textbf{б)}\ 2x^{4} - x^{2} - 36 = 0\]
\[Пусть\ t = x^{2},\ t \geq 0,\ тогда:\]
\[2t^{2} - t - 36 = 0\]
\[D = 1 + 4 \cdot 2 \cdot 36 = 289\]
\[t_{1,2} = \frac{1 \pm 17}{4},\]
\[так\ как\ t \geq 0,\ то\ \ t = 4,5;\]
\[x² = 4,5 \Longrightarrow x = \pm \sqrt{4,5}.\]
\[Ответ:x = \pm \sqrt{4,5}.\]
\[\boxed{\text{572.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[S_{n} = \frac{\left( x_{1} + x_{n} \right) \cdot n}{2};\]
\[\textbf{а)}\ x_{n} = 4n + 2,\ \ \]
\[x_{1} = 4 + 2 = 6:\ \]
\[S_{n} = \frac{(4n + 2 + 6)}{2} \cdot n =\]
\[= 2n^{2} + 4n,\]
\[S_{50} = 2 \cdot 50^{2} + 4 \cdot 50 = 5200.\]
\[S_{100} = 2 \cdot 100^{2} + 4 \cdot 100 =\]
\[= 20\ 400.\]
\[\textbf{б)}\ x_{n} = 2n + 3,\ \ \]
\[x_{1} = 2 + 3 = 5:\ \]
\[S_{n} = \frac{(5 + 2n + 3)}{2} \cdot n = n^{2} + 4n;\]
\[S_{50} = 2500 + 200 = 2700;\]
\[S_{100} = 100² + 4 \cdot 100 = 10\ 400.\]
\[\textbf{в)}\ x_{n} = n - 4;\ \ \ x_{1} = 1 - 4 = - 3:\]
\[S_{n} = \frac{(n - 4 - 3)}{2} \cdot n = \frac{n^{2} - 7n}{2}\]
\[S_{50} = \frac{50^{2} - 7 \cdot 50}{2} =\]
\[= \frac{2500 - 350}{2} = \frac{2150}{2} = 1075.\]
\[S_{100} = \frac{100^{2} - 7 \cdot 100}{2} =\]
\[= \frac{10\ 000 - 700}{2} = \frac{9300}{2} = 4650.\]
\[\textbf{г)}\ \ x_{n} = 3n - 1;\ \ \ x_{1} = 3 - 1 =\]
\[= 2:\]
\[S_{n} = \frac{(3n - 1 + 2)}{2} \cdot n =\]
\[= \frac{3n^{2} + 1n}{2}\]
\[S_{50} = \frac{3 \cdot 50^{2} + 1 \cdot 50}{2} =\]
\[= \frac{3 \cdot 2500 + 50}{2} = \frac{7550}{2} = 3775.\]
\[S_{100} = \frac{3 \cdot 100^{2} + 1 \cdot 100}{2} =\]
\[= \frac{30100}{2} = 15050.\]