\[\boxed{\text{542\ (542).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ x - числитель\ дроби,\ \]
\[а\ y - знаменатель.\]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} \frac{x^{2}}{y - 1} = 2 \\ \frac{x - 1}{y + 1} = \frac{1}{4} \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x^{2} = 2y - 2\ \ \ \ \\ 4x - 4 = y + 1 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} y = 4x - 5\ \ \ \ \ \ \ \ \ \ \\ x^{2} = 8x - 10 - 2 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} y = 4x - 5\ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} - 8x + 12 = 0 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x_{1} = 6\ \ \\ y_{1} = 19 \\ \end{matrix} \right.\ \ \ или\ \ \left\{ \begin{matrix} x_{2} = 2\ \\ y_{2} = 3. \\ \end{matrix} \right.\ \]
\[Ответ:\frac{6}{19}\ или\ \ \ \frac{2}{3}.\]
\[\boxed{\text{542.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[b_{n} = b_{1} + d \cdot (n - 1)\]
\[\textbf{а)}\ b_{7} = b_{1} + d(7 - 1) = b_{1} + 6d;\]
\[\textbf{б)}\ b_{26} = b_{1} + d(26 - 1) =\]
\[= b_{1} + 25d;\]
\[\textbf{в)}\ b_{231} = b_{1} + d(231 - 1) =\]
\[= b_{1} + 230d;\]
\[\textbf{г)}\ b_{k} = b_{1} + d \cdot (k - 1);\]
\[\textbf{д)}\ b_{k + 5} = b_{1} + d \cdot (k + 5 - 1) =\]
\[= b_{1} + d(k + 4);\]
\[\textbf{е)}\ b_{2k} = b_{1} + d \cdot (2k - 1)\ \]