\[\boxed{\text{53\ (53).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ g(x) = \frac{1}{x^{2} + 5}\ \]
\[g(2) = \frac{1}{2^{2} + 5} = \frac{1}{4 + 5} = \frac{1}{9};\]
\[g( - 2) = \frac{1}{( - {2)}^{2} + 5} = \frac{1}{9}.\]
\[Значит:\ \ \]
\[g(2) = g( - 2).\]
\[\textbf{б)}\ g(x) = \frac{x}{x^{2} + 5}\ \]
\[g(2) = \frac{2}{2^{2} + 5} = \frac{2}{4 + 5} = \frac{2}{9};\]
\[g( - 2) = \frac{- 2}{( - {2)}^{2} + 5} = \frac{- 2}{4 + 5} =\]
\[= - \frac{2}{9}.\]
\[Значит:\ \ \]
\[g(2) > g( - 2).\]
\[\textbf{в)}\ g(x) = \frac{- x}{x^{2} + 5}\ \]
\[g(2) = \frac{- 2}{2^{2} + 5} = \frac{- 2}{4 + 5} = - \frac{2}{9};\]
\[g( - 2) = \frac{2}{( - {2)}^{2} + 5} = \frac{2}{4 + 5} = \frac{2}{9}.\]
\[Значит:\ \]
\[g(2) < g( - 2).\]
\[\boxed{\text{53.\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ x^{2} - 8x + q = 0;\ \ \]
\[\ x_{1} - x_{2} = 16\]
\[по\ теореме\ Виета:\]
\(\left\{ \begin{matrix} x_{1} + x_{2} = 8 \\ x_{1} \cdot x_{2} = q \\ \end{matrix} \right.\ \text{\ \ \ \ }\)
\[из\ условия:\ \]
\[x_{1} - x_{2} = 16;\]
\[x_{1} = 16 + x_{2};\ \ \]
\[подставим\]
\[Ответ:q = - 48.\]
\[\textbf{б)}\ x^{2} - 7x + q = 0;\ \ \]
\[\ x_{1}^{2} + x_{2}^{2} = 29\]
\[x_{1}^{2} + 2x_{1}x_{2} + x_{2}^{2} - 2x_{1}x_{2} = 29\]
\[\left( x_{1} + x_{2} \right)^{2} - 2x_{1}x_{2} = 29\]
\[по\ теореме\ Виета:\ \]
\[\left\{ \begin{matrix} x_{1} + x_{2} = 7 \\ x_{1} \cdot x_{2} = q \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[подставим:\]
\[7^{2} - 2 \cdot q = 29\]
\[2q = 49 - 29 = 20\ \ \ |\ \ :2\]
\[q = 10\]
\[Ответ:q = 10.\]