\[\boxed{\text{459\ (459).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ x - длина\ участка,\ \]
\[а\ y - его\ ширина.\ \]
\[Площадь\ прямоугольника:\]
\[S = xy;\ \ по\ условию\ \]
\[она\ = 2400\ м^{2}\text{.\ \ }\]
\[Периметр\ участка\ 2 \cdot (x + y) =\]
\[= 200.\]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} xy = 2400\ \ \ \ \ \ \ \ \ \ \ \ \\ 2 \cdot (x + y) = 200 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} xy = 2400\ \ \\ x + y = 100 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x = 100 - y\ \ \ \ \ \ \ \ \ \ \ \ \ \\ y(100 - y) = 2400 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x = 100 - y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ y^{2} - 100y + 2400 = 0 \\ \end{matrix} \right.\ \]
\[y^{2} - 100y + 2400 = 0\]
\[D_{1} = 2500 - 2400 = 100\]
\[y_{1} = 50 + 10 = 60;\ \]
\[\ y_{2} = 50 - 10 = 40.\]
\[\left\{ \begin{matrix} y_{1} = 60 \\ x_{1} = 40 \\ \end{matrix} \right.\ \ \ \ \ или\ \ \ \left\{ \begin{matrix} y_{2} = 40 \\ x_{2} = 60 \\ \end{matrix}. \right.\ \]
\[Ответ:длина\ 60\ м,\ \]
\[ширина\ 40\ м.\]
\(\boxed{\text{459.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\)
\[\frac{x - 1}{x + 2} - \frac{1 - x}{x^{2} + 3x + 2} =\]
\[= \frac{x - 1}{x + 2} - \frac{1 - x}{(x + 2)(x + 1)} =\]
\[= \frac{(x - 1)(x + 1) - 1 + x}{(x + 1)(x + 2)} =\]
\[= \frac{x^{2} - 1 - 1 + x}{(x + 1)(x + 2)} =\]
\[= \frac{x^{2} + x - 2}{(x + 1)(x + 2)};\]
\[x^{2} + 3x + 2 = (x + 2)(x + 1)\]
\[x_{1} + x_{2} = - 3;\ \ x_{1} \cdot x_{2} = 2\]
\[x_{1} = - 2;\ \ \ x_{2} = - 1.\]
\[x^{2} + x - 2 = (x + 2)(x - 1)\]
\[x_{1} + x_{2} = - 1;\ \ \ x_{1} \cdot x_{2} = - 2\]
\[x_{1} = - 2;\ \ x_{2} = 1.\]
\[\Longrightarrow \frac{(x + 2)(x - 1)}{(x + 1)(x + 2)} = \frac{x - 1}{x + 1}.\]