\[\boxed{\text{450.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\left\{ \begin{matrix} y = x^{2} + 1 \\ y = kx\ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} y = kx\ \ \ \ \ \ \ \ \ \\ kx = x^{2} + 1 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} y = kx\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} - kx + 1 = 0 \\ \end{matrix} \right.\ \]
\[x^{2} - kx + 1 = 0\]
\[D = k^{2} - 4 \Longrightarrow так\ как\ прямая\ \]
\[и\ парабола\ имеют\ только\ одну\]
\[общую\ точку,\ то\ D = 0.\]
\[k^{2} - 4 = 0\]
\[k^{2} = 4\]
\[k = \pm 2.\]
\[Ответ:при\ k = 2\ \ или\ \ k = - 2.\]
\(\boxed{\text{450.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\)
\[ax + by > c\]
\[\textbf{а)}\ a = 0;\ \ b = 1;\ \ c = 3:\]
\[y > 3\]
\[\textbf{б)}\ a = 1;\ \ b = 0;\ \ c = 3:\]
\[x > 3\]