Решебник по алгебре 9 класс Макарычев Задание 449

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 449

Выбери издание
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение
 
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение

\[\boxed{\text{449\ (}\text{н}\text{).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[\textbf{а)}\ \left\{ \begin{matrix} x^{2} + y^{2} = 36 \\ y = x^{2} + 6\ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} x^{2} + y^{2} = 36 \\ x^{2} = y - 6\ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} y^{2} + y - 42 = 0 \\ x^{2} = y - 6\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[y^{2} + y - 42 = 0\]

\[y_{1} + y_{2} = - 1;\ \ \ y_{1} \cdot y_{2} = - 42\]

\[y_{1} = 6;\ \ \ y_{2} = - 7.\]

\[\Longrightarrow \left\{ \begin{matrix} y = 6 \\ x = 0 \\ \end{matrix} \right.\ \text{\ \ \ }или\ \ \ \ \]

\[\left\{ \begin{matrix} y = - 7\ \ \ \ \\ x^{2} = - 13 \\ \end{matrix} \right.\ \Longrightarrow корней\ нет.\]

\[\textbf{б)}\ \left\{ \begin{matrix} x^{2} + y^{2} = 16\ \ \ \ \ \ \ \ \ \ \\ (x - 2)^{2} + y^{2} = 36 \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} y^{2} = 16 - x^{2}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ (x - 2)^{2} + 16 - x^{2} = 36 \\ \end{matrix} \right.\ \]

\[(x - 2)^{2} + 16 - x^{2} = 36\]

\[x^{2} - 4x + 4 + 16 - x^{2} = 36\]

\[- 4x = 36 - 20\]

\[- 4x = 16\]

\[x = - 4.\]

\[\left\{ \begin{matrix} y^{2} = 16 - 4^{2} \\ x = - 4\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} y^{2} = 0 \\ x = - 4 \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} y = 0 \\ x = - 4 \\ \end{matrix}. \right.\ \]

\[\textbf{в)}\ \left\{ \begin{matrix} x^{2} + y^{2} = 25 \\ 4x - y = 0\ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} y^{2} = 25 - x^{2} \\ y = 4x\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} y = 4x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (4x)^{2} = 25 - x^{2} \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} y = 4x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 16x^{2} + x^{2} = 25 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\]

\[\ \left\{ \begin{matrix} y = 4x\ \ \ \ \ \ \\ 17x^{2} = 25 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]

\[\ \left\{ \begin{matrix} x = \pm \sqrt{\frac{25}{17}} \\ y = 4x\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} x = \pm 1,25 \\ y = \pm 5\ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[Ответ:а)\ (0;6);\ \ б)\ ( - 4;0);\ \ \]

\[\textbf{в)}\ ( - 1,25; - 5);(1,25;5)\text{.\ }\]

\[\boxed{\text{449\ (}\text{с}\text{).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[\textbf{а)}\ \left\{ \begin{matrix} x^{2} + y^{2} = 36 \\ y = x^{2} + 6\ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} x^{2} + y^{2} = 36 \\ x^{2} = y - 6\ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} y^{2} + y - 42 = 0 \\ x^{2} = y - 6\ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[y^{2} + y - 42 = 0\]

\[y_{1} + y_{2} = - 1;\ \ \ \]

\[y_{1} \cdot y_{2} = - 42\]

\[y_{1} = 6;\ \ \ y_{2} = - 7.\]

\[\Longrightarrow \left\{ \begin{matrix} y = 6 \\ x = 0 \\ \end{matrix} \right.\ \text{\ \ \ }или\ \ \ \ \]

\[\left\{ \begin{matrix} y = - 7\ \ \ \ \\ x^{2} = - 13 \\ \end{matrix} \right.\ \Longrightarrow корней\ нет.\]

\[\textbf{б)}\ \left\{ \begin{matrix} x^{2} + y^{2} = 16\ \ \ \ \ \ \ \ \ \ \\ (x - 2)^{2} + y^{2} = 36 \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} y^{2} = 16 - x^{2}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ (x - 2)^{2} + 16 - x^{2} = 36 \\ \end{matrix} \right.\ \]

\[(x - 2)^{2} + 16 - x^{2} = 36\]

\[x^{2} - 4x + 4 + 16 - x^{2} = 36\]

\[- 4x = 36 - 20\]

\[- 4x = 16\]

\[x = - 4.\]

\[\left\{ \begin{matrix} y^{2} = 16 - 4^{2} \\ x = - 4\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} y^{2} = 0 \\ x = - 4 \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} y = 0\ \ \ \\ x = - 4 \\ \end{matrix}. \right.\ \]

\[Ответ:а)\ (0;6);\ \ б)\ ( - 4;0).\]

Издание 2
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение

\(\boxed{\text{449.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\)

\[\textbf{а)}\ y = x\]

\[\textbf{б)}\ y = x - 1\]

\[\textbf{в)}\ y = \frac{1}{4}x - 1\]

\[\textbf{г)}\ y = \frac{1}{3}x - 3\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам