\[\boxed{\text{396\ (396).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ x - 2y = 8 \Longrightarrow\]
\[\Longrightarrow (2;\ - 3);(8;0);(0;\ - 4);\]
\[\textbf{б)}\ x + 0 \cdot y = 10;\ \ x = 10;\ \ \]
\[y - любое;\]
\[(10;100);(10;200);\ \ (10;201);\]
\[\textbf{в)}\ x - xy = 12 \Longrightarrow\]
\[\Longrightarrow (12;0);(4;\ - 2);(6;\ - 1);\]
\[\textbf{г)}\ (x + y)(y - 2) = 0 \Longrightarrow\]
\[\Longrightarrow (1;\ - 1);(2;\ - 2);(3;\ - 3).\]
\(\boxed{\text{396.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\)
Пояснение.
Решение.
\[\left\{ \begin{matrix} x^{2} + y^{2} = 25 \\ y = x^{2} - 6\ \ \ \ \\ \end{matrix} \right.\ \]
\[x^{2} + y^{2} = 25\]
\[окружность\ с\ центром\ (0;0)\ и\ \]
\[радиусом\ равным\ 5.\]
\[y = x^{2} - 6\]
\[парабола,\ ветви\ вверх.\]
\[x_{1} \approx 3,2;\ y_{1} \approx 3,9;\]
\[x_{2} \approx - 3,2;\ y_{2} \approx 3,9;\]
\[x_{3} \approx 1,1;\ \ \ y_{3} \approx 4,9;\]
\[x_{4} \approx - 1,1;\ \ \ \ y_{4} \approx 4,9.\]
\[Ответ:(3,2;3,9);\ \ ( - 3,2;3,9);\ \ \]
\[(1,1;4,9);\ \ ( - 1,1;4,9).\]