Решебник по алгебре 9 класс Макарычев Задание 326

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 326

Выбери издание
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение
 
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение

\[\boxed{\text{326\ (326).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Решение.

\[\textbf{а)}\ (x + 25)(x - 30) < 0\]

\[x \in ( - 25;30).\]

\[\textbf{б)}\ (x + 6)(x - 6) > 0\]

\[x \in ( - \infty;\ - 6) \cup (6; + \infty).\]

\[\textbf{в)}\ \left( x - \frac{1}{3} \right)\left( x - \frac{1}{5} \right) \leq 0\]

\[(x - 0,2)\left( x - \frac{1}{3} \right) \leq 0\]

\[x \in \left\lbrack 0,2;\frac{1}{3} \right\rbrack.\]

\[\textbf{г)}\ (x + 0,1)(x + 6,3) \geq 0\]

\[(x + 6,3)(x + 0,1) \geq 0\]

\[x \in ( - \infty;\ - 6,3\rbrack \cup \lbrack - 0,1; + \infty).\]

Издание 2
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{326.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]

\[\textbf{а)}\ x^{4} - 20x^{2} + 64 = 0\]

\[Пусть\ t = x^{2},\ \]

\[t^{2} - 20x + 64 = 0\]

\[D = 100 - 64 = 36\]

\[t_{1,2} = 10 \pm 6 = 16;4;\]

\[\Longrightarrow x^{4} - 20x^{2} + 64 =\]

\[= \left( x^{2} - 16 \right)\left( x^{2} - 4 \right) =\]

\[= (x - 4)(x + 4)(x - 2)(x + 2).\]

\[\textbf{б)}\ x^{4} - 17x^{2} + 16 = 0\]

\[Пусть\ t = x^{2},\]

\[t^{2} - 17t + 16 = 0,\ по\ теореме\ \]

\[Виета:\]

\[t_{1} = 16,\ \ t_{2} = 1,\]

\[\Longrightarrow x^{4} - 17x^{2} + 16 =\]

\[= \left( x^{2} - 16 \right)\left( x^{2} - 1 \right) =\]

\[= (x - 4)(x + 4)(x - 1)(x + 1).\]

\[\textbf{в)}\ x^{4} - 5x^{2} - 36 = 0\]

\[Пусть\ x^{2} = t,\]

\[t^{2} - 5t - 36 = 0\]

\[D = 25 + 4 \cdot 36 = 169\]

\[t_{1,2} = \frac{5 \pm 13}{2}\]

\[t_{1} = 9,\ \ t_{2} = - 4,\]

\[\Longrightarrow x^{4} - 5x^{2} - 36 =\]

\[= \left( x^{2} + 4 \right)(x - 3)(x + 3).\]

\[\textbf{г)}\ x^{4} - 3x^{2} - 4 = 0\]

\[Пусть\ t = x^{2},\ \ t^{2} = x^{4},\]

\[t^{2} - 3t - 4 = 0,\ \ по\ теореме\ \]

\[Виета:\]

\[t_{1} = 4,\ \ t_{2} = - 1,\]

\[\Longrightarrow x^{4} - 3x^{2} - 4 =\]

\[= \left( x^{2} - 4 \right)\left( x^{2} + 1 \right) =\]

\[= (x - 2)(x + 2)\left( x^{2} + 1 \right).\]

\[\textbf{д)}\ 9x^{4} - 10x^{2} + 1 = 0\]

\[Пусть\ t = x^{2},\ \ t^{2} = x^{4},\]

\[9t^{2} - 10t + 1 = 0\]

\[D = 25 - 9 = 16\]

\[t = \frac{5 \pm 4}{9} = \frac{1}{9};1;\]

\[\Longrightarrow 9x^{4} - 10x^{2} + 1 =\]

\[= 9 \cdot \left( x^{2} - 1 \right)\left( x^{2} - \frac{1}{9} \right) =\]

\[= (x - 1)(x + 1)(3x - 1)(3x + 1).\ \]

\[\textbf{е)}\ \ 4x^{4} - 17x^{2} + 4 = 0\]

\[Пусть\ \ t = x^{2},\ \ t^{2} = x^{4},\]

\[4t^{2} - 17t + 4 = 0\]

\[D = 17^{2} - 4 \cdot 4 \cdot 4 = 225\]

\[t_{1,2} = \frac{17 \pm 15}{8} = \frac{1}{4};4;\ \]

\[\Longrightarrow 4x^{4} - 17x^{2} + 4 =\]

\[= 4 \cdot \left( x^{2} - 4 \right)\left( x^{2} - \frac{1}{4} \right) =\]

\[= \left( x^{2} - 4 \right)\left( 4x^{2} - 1 \right) =\]

\[= (x - 2)(x + 2)(2x - 1)(2x + 1).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам