\[\boxed{\text{325\ (325).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ (x + 8)(x - 5) > 0\]
\[x \in ( - \infty;\ - 8) \cup (5; + \infty).\]
\[\textbf{б)}\ (x - 14)(x + 10) < 0\]
\[(x + 10)(x - 14) < 0\]
\[x \in ( - 10;14).\]
\[\textbf{в)}\ (x - 3,5)(x + 8,5) \geq 0\]
\[(x + 8,5)(x - 3,5) \geq 0\]
\[x \in ( - \infty;\ - 8,5\rbrack \cup \lbrack 3,5;\ + \infty).\]
\[\textbf{г)}\ \left( x + \frac{1}{3} \right)\left( x + \frac{1}{8} \right) \leq 0\]
\[x \in \left\lbrack - \frac{1}{3};\ - \frac{1}{8} \right\rbrack.\]
\[\boxed{\text{325.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ x^{4} - 6x^{2} + 3 = 0\]
\[x = \sqrt{3 + \sqrt{5}}:\]
\[\left( 3 + \sqrt{5} \right)^{2} - 6 \cdot \left( 3 + \sqrt{5} \right) + 3 = 0\]
\[9 + 6\sqrt{5} + 5 - 18 - 6\sqrt{5} + 3 = 0\]
\[- 1 \neq 0 \Longrightarrow \sqrt{3 + \sqrt{5}} -\]
\[не\ является\ корнем.\]
\[\textbf{б)}\ x^{4} - 10x^{2} + 23 = 0\]
\[x = \sqrt{5 - \sqrt{2}}:\]
\[\left( 5 - \sqrt{2} \right)^{2} - 10 \cdot \left( 5 - \sqrt{2} \right) + 23 = 0\]
\[25 - 10\sqrt{2} + 2 - 50 + 10\sqrt{2} + 23 = 0\]
\[0 = 0 \Longrightarrow \sqrt{5 - \sqrt{2}} -\]
\[является\ корнем.\]