Решебник по алгебре 9 класс Макарычев Задание 315

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 315

Выбери издание
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение
 
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение

\[\boxed{\text{315\ (315).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[\textbf{а)}\ 7x^{2} - 10x + 7 > 0 \Longrightarrow\]

\[\Longrightarrow парабола,\ ветви\ вверх.\]

\[D = 25 - 7 \cdot 7 = - 24 < 0 \Longrightarrow\]

\[\Longrightarrow нет\ пересечения\ с\ осью\ \text{Ox}.\]

\[\Longrightarrow 7x^{2} - 10x + 7 > 0 \Longrightarrow\]

\[\Longrightarrow при\ любом\ x.\]

\[\textbf{б)} - 6y^{2} + 11y - 10 < 0 \Longrightarrow\]

\[\Longrightarrow парабола,\ ветви\ вниз.\]

\[D = 121 - 4 \cdot 6 \cdot 10 =\]

\[= - 119 < 0 \Longrightarrow нет\ пересечения\ \]

\[с\ осью\ \text{Ox}.\]

\[\Longrightarrow - 6y^{2} + 11y - 10 < 0 \Longrightarrow\]

\[\Longrightarrow при\ любом\ y.\]

\[\textbf{в)}\ 4x^{2} + 12x + 9 \geq 0\]

\[(2x + 3)^{2} \geq 0 \Longrightarrow верно\ при\ \]

\[любом\ x.\]

\[\textbf{г)}\frac{1}{4}x^{2} - 8x + 64 \geq 0\]

\[\left( \frac{1}{2}x - 8 \right)^{2} \geq 0 \Longrightarrow верно\ при\ \]

\[любом\ x.\]

\[\textbf{д)} - 9y^{2} + 6y - 1 \leq 0\]

\[9y^{2} - 6y + 1 \geq 0\]

\[(3y - 1)^{2} \geq 0 \Longrightarrow верно\ при\ \]

\[любом\ y.\]

\[\textbf{е)} - 5x^{2} + 8x - 5 < 0\]

\[5x^{2} - 8x + 5 > 0 \Longrightarrow парабола,\ \]

\[ветви\ вверх,\ найдем\ \]

\[пересечение\ с\ \text{Ox}:\]

\[D = 16 - 5 \cdot 5 = - 9 < 0 \Longrightarrow\]

\[\Longrightarrow нет\ пересечения\ с\ осью\ \text{Ox}.\]

\[\Longrightarrow - 5x^{2} + 8x - 5 < 0 \Longrightarrow\]

\[\Longrightarrow при\ любом\ x.\]

Издание 2
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{315.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]

\[\textbf{а)}\ x^{5} - x^{3} = 0\]

\[x^{3}\left( x^{2} - 1 \right) = 0\]

\[x^{3}(x - 1)(x + 1) = 0\]

\[x_{1} = 0;\ \ x_{2} = 1;\ \ x_{3} = - 1.\]

\[Ответ:x = 0;x = \pm 1.\]

\[\textbf{б)}\ x^{6} = 4x^{4}\]

\[x^{6} - 4x^{4} = 0\]

\[x^{4} \cdot \left( x^{2} - 4 \right) = 0\]

\[x^{4} \cdot (x - 2)(x + 2) = 0\]

\[x_{1} = 0;\ \ x_{2} = 2;\ \ x_{3} = - 2.\]

\[Ответ:x = 0;\ \ x = \pm 2.\]

\[\textbf{в)}\ 0,5x^{3} = 32x\ \ \ \ | \cdot 2\]

\[x^{3} = 64x\]

\[x^{3} - 64x = 0\]

\[x\left( x^{2} - 64 \right) = 0\]

\[x(x - 8)(x + 8) = 0\]

\[x_{1} = 0;\ \ x_{2} = 8;\ \ x_{3} = - 8.\]

\[Ответ:x = 0;\ \ x = \pm 8.\]

\[\textbf{г)}\ 0,2x^{4} = 4x^{2}\ \ \ \ \ \ \ \ | \cdot 5\]

\[x^{4} = 20x^{2}\]

\[x^{4} - 20x^{2} = 0\]

\[x^{2}\left( x^{2} - 20 \right) = 0\]

\[x^{2}\left( x - \sqrt{20} \right)\left( x + \sqrt{20} \right) = 0\]

\[x_{1} = 0;\ \ x_{2} = \sqrt{20} = 2\sqrt{5};\ \]

\[\ x_{3} = - 2\sqrt{5}.\]

\[Ответ:x = 0;\ \ x = \pm 2\sqrt{5}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам