\[\boxed{\text{309\ (309).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ 0,01x^{2} \leq 1\ \ \ \ \ \ | \cdot 100\]
\[x^{2} \leq 100\]
\[x^{2} - 100 \leq 0\]
\[(x - 10)(x + 10) \leq 0\]
\[x \in \lbrack - 10;10\rbrack.\]
\[\textbf{б)}\frac{1}{2}x^{2} > 12\ \ \ \ \ \ | \cdot 2\]
\[x^{2} > 24\ \]
\[x^{2} - 24 > 0\]
\[\left( x - 2\sqrt{6} \right)\left( x + 2\sqrt{6} \right) > 0\]
\[x \in \left( - \infty;\ - 2\sqrt{6} \right) \cup \left( 2\sqrt{6}; + \infty \right).\]
\[\textbf{в)}\ 4x \leq - x^{2}\]
\[x^{2} + 4x \leq 0\]
\[x(x + 4) \leq 0\]
\[x \in \lbrack - 4;0\rbrack.\]
\[\textbf{г)}\ \ \frac{1}{3}x^{2} > \frac{1}{9}\ \ \ \ \ \ \ | \cdot 3\]
\[x^{2} > \frac{1}{3}\]
\[x^{2} - \frac{1}{3} > 0\]
\[\left( x - \sqrt{\frac{1}{3}} \right)\left( x + \sqrt{\frac{1}{3}} \right) > 0\]
\[x \in \left( - \infty;\ - \frac{\sqrt{3}}{3} \right) \cup \left( \frac{\sqrt{3}}{3}; + \infty \right).\]
\[\textbf{д)}\ 5x^{2} > 2x\]
\[5x^{2} - 2x > 0\]
\[5x(x - 0,4) > 0\]
\[x \in ( - \infty;0) \cup (0,4; + \infty).\]
\[\textbf{е)} - 0,3x < 0,6x^{2}\]
\[0,6x^{2} + 0,3x > 0\]
\[0,6x(x + 0,5) > 0\]
\[x \in ( - \infty;\ - 0,5) \cup (0; + \infty).\]
\[\boxed{\text{309.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[1)\ x³ - x + 3 = 0 \Longrightarrow среди\ \]
\[делителей\ 3\ нет\ целых\ корней;\]
\[2)\ x^{4} + x² - 20 = 0\]
\[\left( x^{2} - 4 \right)\left( x^{2} + 5 \right) = 0\]
\[x_{1,2} = \pm 2;\]
\[3)\ x^{4} + 5x² + 4 = 0\]
\[\left( x^{2} + 1 \right)\left( x^{2} + 4 \right) = 0 \Longrightarrow\]
\[\Longrightarrow корней\ нет;\]
\[4)\ x³ - 5x + 4 = 0\]
\[(x - 1)\left( x^{2} + x - 4 \right) = 0\]
\[D = 1 + 16 = 17\]
\[\Longrightarrow целый\ корень\ только\ \]
\[один:\ \ x = 1.\]
\[Ответ:\ \ 4).\]