\[\boxed{\text{308\ (308).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ x^{2} < 16\]
\[x^{2} - 16 < 0\]
\[(x - 4)(x + 4) < 0\]
\[x \in ( - 4;4).\]
\[\textbf{б)}\ x^{2} \geq 3\]
\[x^{2} - 3 \geq 0\]
\[\left( x - \sqrt{3} \right)\left( x + \sqrt{3} \right) \geq 0\]
\[x \in \left( - \infty;\ - \sqrt{3} \right\rbrack \cup \left\lbrack \sqrt{3}; + \infty \right).\]
\[\textbf{в)}\ 0,2x^{2} > 1,8\]
\[0,2x^{2} - 1,8 > 0\ \ \ \ \ \ \ |\ :0,2\]
\[x^{2} - 9 > 0\]
\[(x - 3)(x + 3) > 0\]
\[x \in ( - \infty;\ - 3) \cup (3;\ + \infty).\]
\[\textbf{г)} - 5x^{2} \leq x\]
\[5x^{2} + x \geq 0\]
\[5x(x + 0,2) \geq 0\]
\[x \in ( - \infty; - 0,2\rbrack \cup \lbrack 0; + \infty).\]
\[\textbf{д)}\ 3x^{2} < - 2x\]
\[3x^{2} + 2x < 0\]
\[3x\left( x + \frac{2}{3} \right) < 0\]
\[x \in \left( - \frac{2}{3};0 \right).\]
\[\textbf{е)}\ 7x < x^{2}\]
\[x^{2} - 7x > 0\]
\[x(x - 7) > 0\]
\[x \in ( - \infty;0) \cup (7; + \infty).\]
\[\boxed{\text{308.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ x^{3} + 11x - 108 = 0\]
\[x_{1} = 4 \Longrightarrow корень.\ \]
\[Схема\ Горнера:\]
\[1\] | \[0\] | \[11\] | \[- 108\] | |
---|---|---|---|---|
\[4\] | \[1\] | \[4\] | \[27\] | \[0\] |
\[(x - 4)\left( x^{2} + 4x + 27 \right) = 0\]
\[x^{2} + 4x + 27 = 0\]
\[D = 4 - 27 < 0 \Longrightarrow корней\ нет.\]
\[\textbf{б)}\ x^{5} + 6x + 44 = 0\]
\[x_{1} = - 2 \Longrightarrow корень\ уравнения.\]
\[Схема\ Горнера:\]
\[1\] | \[0\] | \[0\] | \[0\] | \[6\] | \[44\] | |
---|---|---|---|---|---|---|
\[- 2\] | \[1\] | \[- 2\] | \[4\] | \[- 8\] | \[22\] | \[0\] |
\[(x + 2)\left( x^{4} - 2x^{3} + 4x^{2} - 8x + 22 \right) =\]
\[= 0\]
\[x^{4} - 2x^{3} + 4x^{2} - 8x + 22 =\]
\[= \left( x - \frac{1}{2} \right)^{4} + 2,5x^{2} - 7,5x +\]
\[+ 22 - \frac{1}{16} > 0\]
\[\Longrightarrow x = - 2.\]
\[Ответ:а)\ 4;\ \ б) - 2.\]