Решебник по алгебре 9 класс Макарычев Задание 299, 300

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 299, 300

Выбери издание
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение
 
Издание 1
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение

\[\boxed{\text{299\ (300).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[Пусть\ x - это\ искомое\ число;\]

\[\frac{1}{x} - обратное\ ему\ число.\]

\[По\ условию,\ их\ сумма\ в\ 13\ раз\]

\[\ меньше\ суммы\ их\ кубов.\]

\[Составим\ уравнение:\ \]

\[13 \cdot \left( x + \frac{1}{x} \right) = x^{3} + \frac{1}{x^{3}}\]

\[Пусть\ \ x + \frac{1}{x} = t;\ \ t > 0:\]

\[x^{3} + \frac{1}{x^{3}} = \left( x + \frac{1}{x} \right)\left( x^{2} - 1 + \frac{1}{x^{2}} \right)\]

\[x^{2} + \frac{1}{x^{2}} = \left( x + \frac{1}{x} \right)^{2} - 2 = t^{2} - 2\]

\[x^{3} + \frac{1}{x^{3}} = t \cdot \left( t^{2} - 2 - 1 \right) =\]

\[= t \cdot \left( t^{2} - 3 \right).\]

\[Замена:\]

\[13t = t \cdot \left( t^{2} - 3 \right)\]

\[13t = t^{3} - 3t\]

\[t^{3} - 16t = 0\]

\[t\left( t^{2} - 16 \right) = 0\]

\[t(t - 4)(t + 4) = 0\]

\[t_{1} = 0;\ \ \ t_{2,3} = \pm 4.\]

\[Так\ как\ t > 0:\text{\ \ }\]

\[x + \frac{1}{x} = 4\ \ \ \ \ \ \ \ \ \ \ \ \ | \cdot x\]

\[x^{2} - 4x + 1 = 0\]

\[D_{1} = 4 - 1 = 3\]

\[x_{1,2} = 2 \pm \sqrt{3}.\]

\[Ответ:x = 2 \pm \sqrt{3}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам