\[\boxed{\text{276}\text{\ (276)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \left( 2x^{2} + 3 \right)^{2} - 12 \cdot\]
\[\cdot \left( 2x^{2} + 3 \right) + 11 = 0\]
\[Пусть\ 2x^{2} + 3 = t:\ \]
\[t^{2} - 12t + 11 = 0\]
\[D_{1} = 36 - 11 = 25\]
\[t_{1} = 6 + 5 = 11;\ \]
\[\text{\ \ }t_{2} = 6 - 5 = 1\]
\[\left\{ \begin{matrix} 2x^{2} + 3 = 11 \\ 2x^{2} + 3 = 1\ \ \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} 2x^{2} = 8\ \ \ \\ 2x^{2} = - 1 \\ \end{matrix}\ \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x^{2} = 4\ \ \ \\ x^{2} = - 1 \\ \end{matrix} \right.\ \]
\[x^{2} = 4 \Longrightarrow x_{1,2} = \pm 2,\]
\[x^{2} = - 1 \Longrightarrow корней\ не\ имеет.\]
\[Ответ:x = \pm 2.\]
\[\textbf{б)}\ \left( t^{2} - 2t \right)^{2} - 3 = 2 \cdot (t^{2} - 2t)\]
\[Пусть\ \ t^{2} - 2t = y:\]
\[y^{2} - 3 = 2y\]
\[y^{2} - 2y - 3 = 0\]
\[D_{1} = 1 + 3 = 4\]
\[y_{1} = 1 + 2 = 3;\ \ \ \ \ \]
\[\ y_{2} = 1 - 2 = - 1;\]
\[\left\{ \begin{matrix} t^{2} - 2t = 3\ \ \ \\ t^{2} - 2t = - 1 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} t^{2} - 2t - 3 = 0\ \ (1) \\ t^{2} - 2t + 1 = 0\ \ (2) \\ \end{matrix} \right.\ \]
\[(1)\ t^{2} - 2t - 3 = 0\ \]
\[D_{1} = 1 + 3 = 4,\ \ \]
\[t_{1} = 1 + 2 = 3;\ \ \ t_{2} =\]
\[= 1 - 2 = - 1;\]
\[(2)\ t^{2} - 2t + 1 = 0\]
\[(t - 1)^{2} = 0\ \ \]
\[t - 1 = 0\]
\[t_{3} = 1.\]
\[Ответ:t = 3;t = \pm 1.\]
\[\textbf{в)}\ \left( x^{2} + x - 1 \right)\left( x^{2} + x + 2 \right) = 40\]
\[Пусть\ x^{2} + x - 1 = a:\text{\ \ }\]
\[a \cdot (a + 3) = 40\]
\[a^{2} + 3a - 40 = 0\]
\[D = 9 + 160 = 169\]
\[a_{1} = \frac{- 3 - 13}{2} = - 8;\ \ a_{2} =\]
\[= \frac{- 3 + 13}{2} = 5;\]
\[\left\{ \begin{matrix} x^{2} + x - 1 = - 8 \\ x^{2} + x - 1 = 5\ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x^{2} + x + 7 = 0\ \ (1) \\ x^{2} + x - 6 = 0\ \ (2) \\ \end{matrix} \right.\ \]
\[(1)\ x^{2} + x + 7 = 0\]
\[D = 1 - 4 \cdot 7 = - 27 < 0 \Longrightarrow\]
\[\Longrightarrow корней\ нет.\]
\[(2)\ x^{2} + x - 6 = 0\]
\[x_{1} + x_{2} = - 1;\ \ \ x_{1} \cdot x_{2} = - 6\]
\[x_{1} = - 3;\ \ \ \ x_{2} = 2.\]
\[Ответ:x = - 3;x = 2.\]
\[\textbf{г)}\ \left( 2x^{2} + x - 1 \right)\left( 2x^{2} + x - 4 \right) +\]
\[+ 2 = 0\]
\[Пусть\ \ 2x^{2} + x - 1 = a:\ \]
\[a \cdot (a - 3) + 2 = 0\]
\[a^{2} - 3a + 2 = 0\]
\[a_{1} + a_{2} = 3;\ \ \ \ a_{1} \cdot a_{2} = 2\]
\[a_{1} = 1;\ \ \ a_{2} = 2.\]
\[\left\{ \begin{matrix} 2x^{2} + x - 2 = 0\ \ (1) \\ 2x^{2} + x - 3 = 0\ \ (2) \\ \end{matrix} \right.\ \]
\[(1)\ 2x^{2} + x - 2 = 0\]
\[D = 1 + 16 = 17,\ \ \]
\[x_{1,2} = \frac{- 1 \pm \sqrt{17}}{4}.\]
\[(2)\ 2x^{2} + x - 3 = 0\]
\[D = 1 + 24 = 25,\ \]
\[x_{3} = \frac{- 1 - 5}{4} = - 1,5;\ \ x_{4} =\]
\[= \frac{- 1 + 5}{4} = 1.\]
\[Ответ:x = 1;\ \ x = - 1,5;\ \ x =\]
\[= \frac{- 1 \pm \sqrt{17}}{4}.\]
\[\boxed{\text{276.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[1)\ (y - 2)(y - 3) - 4 =\]
\[= y^{2} - 5y + 2\]
\[2)\ (5 - y)(1 - y) + 4 =\]
\[= 5 - 5y - y + y^{2} + 4 =\]
\[= y^{2} - 6y + 9 =\]
\[= (y - 3)^{2} \geq 0 \Longrightarrow не\ подходит,\ \]
\[так\ как\ может\ быть\ нулем.\]
\[3)\ (5 - y)(1 - y) + 10 =\]
\[= 5 - 6y + y^{2} + 10 =\]
\[= y^{2} - 6y + 9 + 6 =\]
\[= (y - 3)^{2} + 6 > 0;\]
\[4)\ (y - 8)(y - 7) - 60 =\]
\[= y^{2} - 15y - 4.\]
\[Ответ:3).\]