Решебник по алгебре 9 класс Макарычев Задание 238

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 238

Выбери издание
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение
 
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение

\[\boxed{\text{238}\text{\ (238)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[\ y = x^{2} - 6x + c \Longrightarrow парабола,\ \]

\[ветви\ направлены\ вверх,\ \]

\[ее\ вершина - наименьшее\ \]

\[значение.\]

\[x_{b} = - \frac{b}{2a} = - \frac{- 6}{2} = 3;\]

\[y_{b} = y(3) = 3^{2} - 6 \cdot 3 + c =\]

\[= 9 - 18 + c = c - 9;\]

\[\textbf{а)}\ График\ функции\ расположен\ \]

\[вышей\ прямой\ y = 4,\ если:\]

\[c - 9 > 4\]

\[c > 4 + 9\]

\[c > 13;\]

\[Ответ:при\ c > 13.\]

\[\textbf{б)}\ График\ функции\ расположен\ \]

\[выше\ прямой\ y = - 1;если:\]

\[c - 9 > - 1\]

\[c > - 1 + 9\]

\[c > 8.\]

\[Ответ:при\ c > 8.\]

Издание 2
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{238.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]

\[\textbf{а)}\ \frac{1}{x - 7} - \frac{1}{x - 1} =\]

\[= \frac{1}{x - 10} - \frac{1}{x - 9}\]

\[ОДЗ:\ \ x \neq 7;1;10;9.\]

\[(x - 9)(x - 10)(x - 1 - x + 7) =\]

\[= (x - 1)(x - 7)(x - 9 - x + 10);\]

\[(x - 9)(x - 10) \cdot 6 =\]

\[= (x - 1)(x - 7) \cdot 1;\]

\[5x^{2} - 106x + 533 = 0\]

\[D = 53^{2} - 5 \cdot 533 = 144\]

\[x_{1,2} = \frac{53 \pm 12}{5},\ \ \]

\[x_{1} = 13,\ \ x_{2} = 8,2.\]

\[Ответ:x = 13;\ \ x = 8,2.\]

\[\textbf{б)}\ \frac{1}{x + 3} - \frac{1}{x + 9} =\]

\[= \frac{1}{x + 5} - \frac{1}{x + 21}\]

\[ОДЗ:\ \ x \neq - 3;\ - 9;\ - 5;\ - 21.\]

\[6 \cdot (x + 5)(x + 21) =\]

\[= 16 \cdot (x + 3)(x + 9);\]

\[6 \cdot \left( x^{2} + 21x + 5x + 105 \right) =\]

\[= 16 \cdot \left( x^{2} + 9x + 3x + 27 \right);\]

\[5x^{2} + 18x - 99 = 0\]

\[D = 9^{2} + 5 \cdot 99 = 576\]

\[x_{1,2} = \frac{- 9 \pm 24}{5},\ \ \]

\[x_{1} = 3,\ \ x_{2} = - 6,6.\]

\[Ответ:x = 3;\ \ x = - 6,6.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам