\[\boxed{\text{210}\text{\ (210)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = x^{2}\]
\[D(y) = ( - \infty; + \infty);\]
\[E\left( x^{2} \right) = \lbrack 0;\ + \infty);\]
\[Функция\ не\ сохраняет\ знак.\]
\[2)\ y = x^{2} + 5\]
\[D(y) = ( - \infty; + \infty);\]
\[E\left( x^{2} + 5 \right) = \lbrack 5;\ + \infty)\]
\[Функция\ сохраняет\ знак.\]
\[3)\ y = 2x + 5\]
\[D(y) = ( - \infty; + \infty);\]
\[E(2x + 5) = ( - \infty;\ + \infty).\]
\[Функция\ не\ сохраняет\ знак.\]
\[4)\ y = x^{3}\]
\[D(y) = ( - \infty; + \infty);\]
\[E\left( x^{3} \right) = ( - \infty;\ + \infty).\]
\[Функция\ не\ сохраняет\ знак.\]
\[5)\ y = - x^{2}\]
\[D(y) = ( - \infty; + \infty);\]
\[E\left( - x^{2} \right) = ( - \infty;0\rbrack.\]
\[Функция\ не\ сохраняет\ знак.\]
\[6)\ y = - x^{2} - 4\]
\[D(y) = ( - \infty; + \infty);\]
\[E\left( - x^{2} - 4 \right) = ( - \infty; - 4\rbrack.\]
\[Функция\ сохраняет\ знак;\ y < 0.\]
\[7)\ y = \sqrt{x}\]
\[D(y) = \lbrack 0; + \infty);\]
\[E\left( \sqrt{x} \right) = \lbrack 0;\ + \infty).\]
\[Функция\ не\ сохраняет\ знак.\]
\[8)\ y = \sqrt{x} + 1\ \]
\[D(y) = \lbrack 0; + \infty);\]
\[E\left( \sqrt{x} + 1 \right) = \lbrack 1;\ + \infty).\]
\[Функция\ сохраняет\ знак;\ y > 0.\]
\[9)\ y = x^{4} + x^{2} + 6\]
\[D(y) = ( - \infty; + \infty);\]
\[E\left( x^{4} + x^{2} + 6 \right) = \lbrack 6;\ + \infty).\]
\[Функция\ сохраняет\ знак;\ y > 0.\]
\[\boxed{\text{210.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ 2x^{2} - 6x^{5} + 1 = 0\ \]
\[степень\ 5;\ \ \]
\[\textbf{б)}\ \ x^{6} - 4x^{5} + 1 = 0\]
\[степень\ 6;\ \ \]
\[\textbf{в)}\ \frac{1}{x}x^{5} = 0\]
\[степень\ 5;\]
\[\textbf{г)}\ (x + 8)(x - 7) =\]
\[= x² + 8x - 7x - 56 = 0\]
\[степень\ 2;\]
\[\textbf{д)}\ \frac{x}{2} - \frac{x}{4} = 5\]
\[степень\ 1;\ \]
\[\textbf{е)}\ 5x³ - 5x\left( x^{2} + 4 \right) = 17\]
\[5x^{3} - 5x^{3} - 20x - 17 = 0\]
\[- 20x - 17 = 0;\ \ \]
\[\ степень\ \ 1.\]