\[\boxed{\text{115\ (115).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = ax^{2} + 5\]
\[При\ a > 0:\]
\[график\ лежит\ в\ верхней\ \]
\[полуплоскости,\ ветви\ вверх,\ \]
\[не\ пересекает\]
\[ось\ абсцисс \rightarrow нулей\ не\ имеет.\]
\[При\ a = 0:\]
\[y = 0 \cdot x^{2} + 5 = 5\]
\[получается\ прямая,\ \]
\[параллельна\ оси\ абсцисс \rightarrow\]
\[\rightarrow нулей\ не\ имеет.\]
\[При\ \ a < 0:\]
\[ветви\ вниз,\ график\ пересекает\ \]
\[ось\ абсцисс \rightarrow функция\ \]
\[имеет\ нули.\]
\[Ответ:при\ a < 0.\]
\[\boxed{\text{115.\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ \ y = kx + b;\ \ \]
\[1)\ A(2;1);\ \ B( - 1;3)\]
\[1 = 2k + b;\ \ 3 = - k + b\]
\[b = 1 - 2k;\ \ \ b = 3 + k\]
\[1 - 2k = 3 + k\]
\[- 3k = 2\]
\[k = - \frac{2}{3}.\]
\[b = 3 + k = 3 - \frac{2}{3} = 2\frac{1}{3}.\]
\[Уравнение\ прямой:\]
\[y = - \frac{2}{3}x + 2\frac{1}{3}.\]
\[(В\ учебнике\ неверный\ ответ).\]
\[2)\ A(1;5);\ \ B( - 1;2)\]
\[5 = k + b;\ \ \ \ 2 = - k + b\]
\[b = 5 - k;\ \ \ \ b = 2 + k\]
\[5 - k = 2 + k\]
\[- 2k = - 3\]
\[k = 1,5.\]
\[b = 2 + 1,5 = 3,5.\]
\[Уравнение\ прямой:\]
\[y = 1,5x + 3,5.\]
\[\textbf{б)}\ y = \frac{k}{x};\]
\[1)\ A(1;\ - 2)\]
\[- 2 = \frac{k}{1}\]
\[k = - 2.\]
\[Уравнение:\]
\[y = - \frac{2}{x}.\]
\[2)\ B(3;1)\]
\[1 = \frac{k}{3}\]
\[k = .\]
\[Уравнение:\]
\[y = \frac{3}{x}.\]
\[\textbf{в)}\ y = \sqrt{\text{kx}}\]
\[1)\ A(1;2)\]
\[2 = \sqrt{1k}\]
\[4 = k\]
\[k = 4.\]
\[Уравнение:\]
\[y = \sqrt{4x}.\]
\[2)\ B(1;3)\]
\[3 = \sqrt{1k}\]
\[k = 9.\]
\[Уравнение:\]
\[y = \sqrt{9x}.\]