\[\boxed{\text{1046\ (1046).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = \frac{x}{x^{2} + 1},\]
\[y \cdot \left( x^{2} + 1 \right) = x\]
\[yx^{2} - x + y = 0\]
\[D = ( - 1)^{2} - 4 \cdot y^{2} = 1 - 4y^{2} =\]
\[= (1 - 2y)(1 + 2y)\]
\[D \geq 0,\]
\[1 - 4y^{2} > 0\]
\[4y^{2} \leq 1\]
\[y^{2} \leq \frac{1}{4}\]
\[- \frac{1}{2} \leq y \leq \frac{1}{2}.\]
\[Ответ:y \in \left\lbrack - \frac{1}{2};\frac{1}{2} \right\rbrack.\]