\[\boxed{\text{92\ (92).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1.\]
\[1)\ 4x + 6 = 2x - 3\]
\[4x - 2x = - 3 - 6\]
\[2x = - 9\]
\[x = - 4,5.\]
\[2)\ 4x + 3 = 2x - 6\]
\[4x - 2x = - 6 - 3\]
\[2x = - 4,5.\]
\[Равносильны.\]
\[2.\]
\[1)\ 8x - 4 = 0\ \]
\[8x = 4\]
\[x = 0,5.\]
\[2)\ 2x - 1 = 0\ \]
\[2x = 1\]
\[x = 0,5.\]
\[Равносильны.\]
\[3.\]
\[x^{2} + 2x - 3 = 0\ \ и\ \ \ x^{2} + x =\]
\[= 3 - x\]
\[x^{2} + x - 3 + x = 0\]
\[x^{2} + 2x - 3 = 0\]
\[Равносильны.\]
\[4)\ \frac{x^{2} - 1}{x + 1} = 0\ \ и\ \text{\ x}^{2} - 1 = 0\]
\(x^{2} = 1\)
\(x^{2} = \pm 1\)
\[x \neq - 1\]
\[x = 1.\]
\[x^{2} = 1\]
\[x = 1\]
\[x = - 1.\]
\[Неравносильны.\]
\[5)\ \frac{x^{2} - 1}{x + 1} = 0\ \ \ и\ \ x - 1 = 0\]
\[x^{2} = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 1\]
\[x \neq - 1\]
\[x = 1.\]
\[Равносильны.\]
\[6)\ x^{2} + 1 = 0\ \ \ и\ \ 0 \cdot x = 5\]
\[нет\ корней\ \ \ \ \ \ \ \ нет\ корней.\]
\[Равносильны.\]