\[\boxed{\mathbf{889\ (889).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[q = 3;\ \ c_{n} = 162;\ \ S_{n} = 242\]
\[c_{n} = 162:\ \]
\[c_{n} = c_{1} \cdot q^{n - 1}\text{\ \ }\]
\[c_{1} \cdot q^{n - 1} = 162\]
\[\frac{c_{1} \cdot 3^{n}}{3} = 162\ \ \]
\[c_{1} \cdot 3^{n} = 162 \cdot 3\ \]
\[c_{1} \cdot 3^{n} = 486\]
\[S_{n} = 242:\]
\[S_{n} = \frac{c_{1} \cdot \left( q^{n} - 1 \right)}{q - 1} = 242\ \ \]
\[\frac{c_{1}\left( 3^{n} - 1 \right)}{3 - 1} = 242\]
\[c_{1}\left( 3^{n} - 1 \right) = 484\ \]
\[\left\{ \begin{matrix} c_{1} \cdot 3^{n} = 486\ \ \ \ \ \ \ \ \\ c_{1}\left( 3^{n} - 1 \right) = 484 \\ \end{matrix} \right.\ \ \ |\ \ (:)\ \]
\[\ \frac{c_{1} \cdot 3^{n}}{c_{1}\left( 3^{n} - 1 \right)} = \frac{486}{484}\text{\ \ }\]
\[\frac{3^{n}}{3^{n - 1}} = \frac{243}{242},\]
\[242 \cdot 3^{n} = 243 \cdot \left( 3^{n} - 1 \right)\]
\[242 \cdot 3^{n} = 243 \cdot 3^{n} - 243\]
\[242 \cdot 3^{n} - 243 \cdot 3^{n} =\]
\[= - 243\ \ | \cdot ( - 1)\]
\[3^{n} \cdot (243 - 242) = 243\]
\[3^{n} \cdot 1 = 243\]
\[3^{n} = 3^{5} \Longrightarrow \ \ n = 5\]
\[Ответ:n = 5.\]