\[\boxed{\mathbf{848\ (848).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Запишем\ прогрессию:\ \]
\[\ b_{1},b_{2},b_{3},\ldots,\ b_{k},\ b_{n - k + 1},\ldots,\ b_{n}.\]
\[Получаем:\]
\[{b_{n} = b_{1} \cdot q^{n - 1}\text{\ \ } }{b_{k} = b_{1} \cdot q^{k - 1}\text{\ \ }}\]
\[b_{n - k + 1} = b_{1}q^{n - k + 1 - 1} = b_{1}q^{n - k}\]
\[b_{1}b_{n} = b_{1} \cdot b_{1}q^{n - 1} = b_{1}^{2} \cdot q^{n - 1}\]
\[b_{k} \cdot b_{n - k + 1} = b_{1}q^{k - 1} \cdot b_{1}q^{n - k} =\]
\[= b_{1}^{2} \cdot q^{k - 1 + n - k} = b_{1}^{2} \cdot q^{n - 1}.\]
\[Отсюда:\ \ \ \]
\[b_{1}b_{n} = \ b_{k} \cdot b_{n - k + 1}.\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\mathbf{848.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Пусть\ числа\ a_{1},\ a_{2},\ a_{3},\]
\[3a_{1}^{2} + 24a_{1} - 6a_{1}^{2} +\]
\[+ 5 \cdot \left( 16 - 8a_{1} + a_{1}^{2} \right) = 80\]
\[3a_{1}^{2} + 24a_{1} - 6a_{1}^{2} + 80 -\]
\[- 40a_{1} + 5a_{1}^{2} = 80\]
\[2a_{1}^{2} - 16a_{1} = 0,\ \ \]
\[2a_{1}\left( a_{1} - 8 \right) = 0,\ \ \]
\[a_{1} = 0\ \ или\ \ \ a_{1} = 8\]
\[a_{1} = 0,\ \ a_{2} = a_{1} + d,\ d = 4 -\]
\[- a_{1} = 4,\ \ a_{2} = 0 + 4 = 4,\ \ \]
\[a_{3} = 4 + 4 = 8\]
\[a_{1} = 8,\ \ d = 4 - 8 = - 4,\]
\[\text{\ \ }a_{2} = 8 - 4 = 4,\ \ \]
\[a_{3} = 4 - 4 = 0\]
\[Ответ:0;4;8.\]