\[\boxed{\mathbf{845\ (845).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[- 1,\ 2y,\ - 8 \Longrightarrow геометрическая\ \]
\[прогрессия.\]
\[(2y)^{2} = - 1 \cdot ( - 8)\]
\[4y^{2} = 8\]
\[y^{2} = 2 \Longrightarrow \ \ y = \pm \sqrt{2}\]
\[Ответ:\ y = \pm \sqrt{2}.\]
\[\boxed{\mathbf{845.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[S_{n} = \frac{2a_{1} + d(n - 1)}{2} \cdot n,\ \ \]
\[S_{n} = 360,\ \ n = 4,\]
\[\ \ d = 54\]
\[\frac{2a_{1} + 54 \cdot (4 - 1)}{2} \cdot 4 =\]
\[= 360\ \ \ |\ :2\]
\[2a_{1} + 162 = 180\]
\[2a_{1} = 18,\ \ a_{1} = 9\]
\[a_{2} = a_{1} + d = 9 + 54 = 63\]
\[a_{3} = 63 + 54 = 117,\ \ \]
\[a_{4} = 117 + 54 = 171\]
\[Ответ:9{^\circ},\ 63{^\circ},\ 117{^\circ},\ 171{^\circ}.\ \]