\[\boxed{\mathbf{841\ (841).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[b_{n} = 5 \cdot 4^{n - 2}\]
\[\frac{b_{n + 1}}{b_{n}} = \frac{5 \cdot 4^{n + 1 - 2}}{5 \cdot 4^{n - 2}} = \frac{5 \cdot 4^{n - 1}}{5 \cdot 4^{n - 2}} =\]
\[= 4^{1} = 4\]
\[Значит,\ q = 4 - это\]
\[\ геометрическая\ прогрессия.\]
\[b_{1} = 5 \cdot 4^{1 - 2} = 5 \cdot 4^{- 1} =\]
\[= \frac{5}{4} = 1,25.\]
\[Ответ:да;\ \ b_{1} = 1,25;\ \ q = 4.\]
\[\boxed{\mathbf{841.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a_{7} = 3\frac{1}{6},\ \ d = \frac{3}{8}\]
\[a_{7} = a_{1} + 6d,\ \ \]
\[a_{1} = a_{7} - 6d = 3\frac{1}{6} - 6 \cdot \frac{3}{8} =\]
\[= 3\frac{1}{6} - \frac{9}{4} = \frac{19}{6} - \frac{9}{4} =\]
\[= \frac{38 - 27}{12} = \frac{11}{12}\]
\[Ответ:a_{1} = \frac{11}{12}.\]